--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FacebookAI_roberta-base_custom_data results: [] --- # FacebookAI_roberta-base_custom_data This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3722 - Precision Macro: 0.8399 - Recall Macro: 0.8127 - F1 Macro: 0.8177 - Accuracy: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:--------:| | 0.4766 | 1.0 | 270 | 0.3801 | 0.8110 | 0.8230 | 0.8160 | 0.8089 | | 0.3689 | 2.0 | 540 | 0.3722 | 0.8399 | 0.8127 | 0.8177 | 0.8265 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1