--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FacebookAI_roberta-base_custom_data results: [] --- # FacebookAI_roberta-base_custom_data This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3682 - Precision Macro: 0.8383 - Recall Macro: 0.8140 - F1 Macro: 0.8200 - Accuracy: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:--------:| | 0.4598 | 1.0 | 270 | 0.4176 | 0.8068 | 0.8221 | 0.8125 | 0.8052 | | 0.3705 | 2.0 | 540 | 0.3682 | 0.8383 | 0.8140 | 0.8200 | 0.8265 | | 0.3 | 3.0 | 810 | 0.4171 | 0.8237 | 0.8122 | 0.8150 | 0.8182 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1