File size: 1,819 Bytes
ec169fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de2d5d
 
 
 
ec169fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de2d5d
ec169fe
 
 
 
 
4de2d5d
 
ec169fe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FacebookAI_roberta-base_custom_data
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FacebookAI_roberta-base_custom_data

This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3722
- Precision Macro: 0.8399
- Recall Macro: 0.8127
- F1 Macro: 0.8177
- Accuracy: 0.8265

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:--------:|
| 0.4766        | 1.0   | 270  | 0.3801          | 0.8110          | 0.8230       | 0.8160   | 0.8089   |
| 0.3689        | 2.0   | 540  | 0.3722          | 0.8399          | 0.8127       | 0.8177   | 0.8265   |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1