danil-kuk commited on
Commit
f4e06d0
·
verified ·
1 Parent(s): 516bf24

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.55 +/- 22.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5042e74220>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5042e742c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5042e74360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5042e74400>", "_build": "<function ActorCriticPolicy._build at 0x7c5042e744a0>", "forward": "<function ActorCriticPolicy.forward at 0x7c5042e74540>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5042e745e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5042e74680>", "_predict": "<function ActorCriticPolicy._predict at 0x7c5042e74720>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5042e747c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5042e74860>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5042e74900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5044b003c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739608827928688240, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNotTwc4q4+0yRdvhR0ur6PVhK+K9INvQAAAAAAAAAAZjwzPex2fj4yMWS8mf6svhGoDD0i6la8AAAAAAAAAABaM749rp62Pr2sM77nW5++ZYYzvagZoL0AAAAAAAAAABq3az05btg+Xt0AvqUNzb5WDc69/ZKlvAAAAAAAAAAApomtPdKWtz82xxA/bVnLvXFGxzyWPD8+AAAAAAAAAADtOQq+Kt2GP9G/F7uydAm/EfFkvhPM/T0AAAAAAAAAAJoBSTtRit89ZjXKu8lXnL5CegW8cogNvQAAAAAAAAAALXVYPod5Yz/l1HE7yc/Hvu84iT4eUEa+AAAAAAAAAAAzxcG8SDOTuoFamjqicKw0SWVgOhVqsrkAAIA/AACAP2ZkADyuIaU9LPNBvp/AoL5yKQe+dWS9vAAAAAAAAAAA5rm3PS8bPz/ak9w9Tu7KvvQ4tD2TInk7AAAAAAAAAABA77A9wcXZPWg/6L2VEKO+sm4uPbUucT0AAAAAAAAAAM0m/z2QgLM/8zKPPoLyA7+xJqQ9v2REPgAAAAAAAAAAABTjvI7/xT2RZgU+apmHvo+11j2jeog7AAAAAAAAAACzdxe9hfuvuYmkBDacoqwwpGwuuxYtILUAAIA/AACAPxqzYT320kK8g+Vru6EgfD1aJJ69kkSMPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKs2YfGMn+MAWyUS/iMAXSUR0Ccq7F6zE75dX2UKGgGR0BwTQsSTQmeaAdL+GgIR0CcrCnmaH9FdX2UKGgGR0ByKZ1W8yvcaAdL/mgIR0CcrGDziCJ5dX2UKGgGR0BxXLUG3WnTaAdNAQFoCEdAnKyx8x9G7XV9lChoBkdAc1IjPOY6XGgHTQsBaAhHQJytR3jdYXB1fZQoaAZHQHLH0tdzGPxoB00kAWgIR0CcraLFXJYDdX2UKGgGR0Bw20HAymALaAdNCAFoCEdAnK29Bv73wnV9lChoBkdAcUkYsd1dPmgHS/5oCEdAnK5qp97Wu3V9lChoBkdAcR2JF9a2W2gHS/xoCEdAnK92K64DtHV9lChoBkdAcDH5qdpZfWgHTQoBaAhHQJywHIV/MGJ1fZQoaAZHQG90jye7L+xoB00MAWgIR0CcsDaufVZtdX2UKGgGR0BwaU1UEPlNaAdNDgFoCEdAnLA8urZJ1HV9lChoBkdActGBuXNTtWgHS91oCEdAnLDTzd1uBXV9lChoBkdAbrUSVW0Z32gHS8xoCEdAnLEE0Nz8xnV9lChoBkdAcqe8yeqaPWgHS+poCEdAnLH8OPNmlXV9lChoBkdAcvYX5FgDzWgHS+VoCEdAnLK2exwAEXV9lChoBkdAcOiX/o7muGgHS9xoCEdAnLM7Z8KG+XV9lChoBkdAcnPLL6k692gHS+FoCEdAnLROzhP0qnV9lChoBkdAcQXR6nivPmgHTRQBaAhHQJy0d5GBnSR1fZQoaAZHQHHV/vnbItFoB00AAWgIR0CctMlBhQWOdX2UKGgGR0BzheF0xM37aAdL4mgIR0CctV2CuloEdX2UKGgGR0Bu7xNRFZxJaAdNBAFoCEdAnLYWZZ0Sy3V9lChoBkdAb9m1UlzEJmgHS/toCEdAnLY47JW/8HV9lChoBkdAc0EwGW2PUGgHS+xoCEdAnLZc0k4WDnV9lChoBkdARyBWilBQemgHS8RoCEdAnLdVuFYdQ3V9lChoBkdAcXggCfYjB2gHS/VoCEdAnLfMpw0fo3V9lChoBkdAb3F16mfoR2gHS+loCEdAnLfnEAHVw3V9lChoBkdAOuS3w1BMSWgHS69oCEdAnLifnSv1UXV9lChoBkdAcmCzYEnss2gHS+doCEdAnLi+vt+kQHV9lChoBkdAc7sTHsC1Z2gHS/9oCEdAnLi/H5rP+nV9lChoBkdAbu5jurp7kWgHTSUBaAhHQJy5+AG0NSZ1fZQoaAZHQG9ubiIcinpoB0vyaAhHQJy6IgLZzxR1fZQoaAZHQEtvhjOLR8doB0uraAhHQJy6b6LwWnF1fZQoaAZHQG5DJIlMRHxoB0v/aAhHQJy751GLDQ91fZQoaAZHQG/EXJo0ygxoB0vsaAhHQJy8PrgOz6d1fZQoaAZHQHByupCKJl9oB0v6aAhHQJzOykGiYb91fZQoaAZHQHAVudf9gndoB0v6aAhHQJzPifVZs9B1fZQoaAZHQG1/2/JvHcVoB0vxaAhHQJzQAT+NtIl1fZQoaAZHQHHOX0se4kNoB0v7aAhHQJzQJPznRsx1fZQoaAZHQHFRD+m3vx9oB00EAWgIR0Cc0JWmxdIHdX2UKGgGR0BxSwaZQYUGaAdL1WgIR0Cc0RdjXnQqdX2UKGgGR0BvmmYlY2bYaAdNEwFoCEdAnNGv5Lytm3V9lChoBkdAcgfEytV7yGgHS/JoCEdAnNHF0gbIcXV9lChoBkdAcLJWcSXdCWgHS/BoCEdAnNHT+NtIkXV9lChoBkdAcaeBsANoamgHTQ8BaAhHQJzR8u01IiF1fZQoaAZHQHD874Fiay9oB0vuaAhHQJzSmiyprDZ1fZQoaAZHQHFQC8vmHQBoB0v6aAhHQJzTJ0OmR/51fZQoaAZHQHJmGlMyrPtoB00aAWgIR0Cc0610T101dX2UKGgGR0By6IrwvxpdaAdL7mgIR0Cc08gG8mKJdX2UKGgGR0Bt3V72L5ymaAdL72gIR0Cc1AWIGhVVdX2UKGgGR0BwGr/echC/aAdNeAFoCEdAnNQ5iqhlDnV9lChoBkdAclxdZ7ojfWgHS/toCEdAnNSroB7u2XV9lChoBkdAcsNVh1DBuWgHS+BoCEdAnNUvyPMjeXV9lChoBkdAcSK+so2GZmgHS+hoCEdAnNX4PPLPlnV9lChoBkdAc1d9SMtK7WgHTRQBaAhHQJzWBP9DQZ51fZQoaAZHQHNXSqhlDnhoB0vkaAhHQJzWXPGACnx1fZQoaAZHQHJsy3G4qgBoB00jAWgIR0Cc1uzwtrbhdX2UKGgGR0BwcazhP0qZaAdL42gIR0Cc1vpcophGdX2UKGgGR0BxIUyfthNNaAdL7mgIR0Cc1xoAXEZSdX2UKGgGR0Bx/Dm7rcCYaAdNBgFoCEdAnNe029+PR3V9lChoBkdAb/JkXk5p8GgHS+ZoCEdAnNfWFev6j3V9lChoBkdAcXB+XZ5AyGgHS9ZoCEdAnNgFlCkXUHV9lChoBkdAcW4tozvZy2gHTREBaAhHQJzYGfWcz691fZQoaAZHQHAL05hjOLRoB0voaAhHQJzZaQtBfKJ1fZQoaAZHQHHDeQQtjCpoB00CAWgIR0Cc2XQ6ZH/cdX2UKGgGR0BywlrJr+HaaAdL+2gIR0Cc2amgJ1JUdX2UKGgGR0Bw6vEdeY2LaAdNCgFoCEdAnNnBBNVR13V9lChoBkdAclv7gbZOBWgHS/ZoCEdAnNouvt+kQHV9lChoBkdAbwEeBg/kemgHS/9oCEdAnNrp2MbWE3V9lChoBkdAcgH4EfT1CmgHS+9oCEdAnNtDGLk0anV9lChoBkdAbXLwDvE0i2gHTQ4BaAhHQJzcDxusLfF1fZQoaAZHQHC87cbiqABoB0v1aAhHQJzce/j81oB1fZQoaAZHQHE2at5le4VoB00bAWgIR0Cc3MqoqCpWdX2UKGgGR0BwNmqvNeMRaAdL5GgIR0Cc3QtALRa5dX2UKGgGR0By9+OMl1KXaAdNDAFoCEdAnN0H0Cih4HV9lChoBkdAcXIcYZVGTmgHS+FoCEdAnN0usLfDUHV9lChoBkdAcEVNIbwSamgHS99oCEdAnN051vES/XV9lChoBkdAcA4iExqO92gHTQ4BaAhHQJzdPe1rqMZ1fZQoaAZHQHFue8XenAJoB00YAWgIR0Cc3gdz4k/sdX2UKGgGR0Bv8BkkKNQ1aAdL9GgIR0Cc3vV7hNucdX2UKGgGR0ByfQaQ3gk1aAdL7WgIR0Cc3xwW3z+WdX2UKGgGR0Bzs3k6tDD1aAdL/GgIR0Cc3ytcfNiZdX2UKGgGR0BwhXrMTviMaAdL+WgIR0Cc30RKHwgDdX2UKGgGR0BwlZsKsuFpaAdL52gIR0Cc32wAEMb4dX2UKGgGR0Btp7y8SPELaAdL+WgIR0Cc4HJrtVrAdX2UKGgGR0BzA5VrAP/aaAdL72gIR0Cc4JHBk7OndX2UKGgGR0BymU0waisXaAdL1GgIR0Cc4LFY+0PZdX2UKGgGR0Buzti6QNkOaAdL3WgIR0Cc4csijcmCdX2UKGgGR0BxPz101ZTyaAdL6GgIR0Cc4lTFVDKHdX2UKGgGR0BwnhHUc4o7aAdNBgFoCEdAnOJUsSTQmnV9lChoBkdAcH6LmZE2HmgHTQEBaAhHQJzihfkWAPN1fZQoaAZHQG6Llum78NxoB00JAWgIR0Cc4u3CsOoYdX2UKGgGR0BxX44BFNL2aAdNBAFoCEdAnOL/HtF8X3V9lChoBkdAcgpMYdhiLGgHTQcBaAhHQJzjBUZNwit1fZQoaAZHQHBlqMNtqHpoB0voaAhHQJzjNHMEA5t1fZQoaAZHQHJPYicG1QZoB0viaAhHQJzkMsRQJol1fZQoaAZHQHJ9U3Ov+wVoB0vkaAhHQJzkX8tPHkt1fZQoaAZHQG/OoJqqOtJoB0vzaAhHQJzkjcnE2pB1fZQoaAZHQG6lxNIsiB5oB0v7aAhHQJzlPJ/5Lyt1fZQoaAZHQHCshCD28I1oB0vaaAhHQJzmCIXTEzh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6492794d116871c9dc63cecb78665ddce2e5fab01693c1b01eef5f36bbf09bd4
3
+ size 148044
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5042e74220>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5042e742c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5042e74360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5042e74400>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c5042e744a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c5042e74540>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5042e745e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5042e74680>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c5042e74720>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5042e747c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5042e74860>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5042e74900>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c5044b003c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1739608827928688240,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNotTwc4q4+0yRdvhR0ur6PVhK+K9INvQAAAAAAAAAAZjwzPex2fj4yMWS8mf6svhGoDD0i6la8AAAAAAAAAABaM749rp62Pr2sM77nW5++ZYYzvagZoL0AAAAAAAAAABq3az05btg+Xt0AvqUNzb5WDc69/ZKlvAAAAAAAAAAApomtPdKWtz82xxA/bVnLvXFGxzyWPD8+AAAAAAAAAADtOQq+Kt2GP9G/F7uydAm/EfFkvhPM/T0AAAAAAAAAAJoBSTtRit89ZjXKu8lXnL5CegW8cogNvQAAAAAAAAAALXVYPod5Yz/l1HE7yc/Hvu84iT4eUEa+AAAAAAAAAAAzxcG8SDOTuoFamjqicKw0SWVgOhVqsrkAAIA/AACAP2ZkADyuIaU9LPNBvp/AoL5yKQe+dWS9vAAAAAAAAAAA5rm3PS8bPz/ak9w9Tu7KvvQ4tD2TInk7AAAAAAAAAABA77A9wcXZPWg/6L2VEKO+sm4uPbUucT0AAAAAAAAAAM0m/z2QgLM/8zKPPoLyA7+xJqQ9v2REPgAAAAAAAAAAABTjvI7/xT2RZgU+apmHvo+11j2jeog7AAAAAAAAAACzdxe9hfuvuYmkBDacoqwwpGwuuxYtILUAAIA/AACAPxqzYT320kK8g+Vru6EgfD1aJJ69kkSMPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKs2YfGMn+MAWyUS/iMAXSUR0Ccq7F6zE75dX2UKGgGR0BwTQsSTQmeaAdL+GgIR0CcrCnmaH9FdX2UKGgGR0ByKZ1W8yvcaAdL/mgIR0CcrGDziCJ5dX2UKGgGR0BxXLUG3WnTaAdNAQFoCEdAnKyx8x9G7XV9lChoBkdAc1IjPOY6XGgHTQsBaAhHQJytR3jdYXB1fZQoaAZHQHLH0tdzGPxoB00kAWgIR0CcraLFXJYDdX2UKGgGR0Bw20HAymALaAdNCAFoCEdAnK29Bv73wnV9lChoBkdAcUkYsd1dPmgHS/5oCEdAnK5qp97Wu3V9lChoBkdAcR2JF9a2W2gHS/xoCEdAnK92K64DtHV9lChoBkdAcDH5qdpZfWgHTQoBaAhHQJywHIV/MGJ1fZQoaAZHQG90jye7L+xoB00MAWgIR0CcsDaufVZtdX2UKGgGR0BwaU1UEPlNaAdNDgFoCEdAnLA8urZJ1HV9lChoBkdActGBuXNTtWgHS91oCEdAnLDTzd1uBXV9lChoBkdAbrUSVW0Z32gHS8xoCEdAnLEE0Nz8xnV9lChoBkdAcqe8yeqaPWgHS+poCEdAnLH8OPNmlXV9lChoBkdAcvYX5FgDzWgHS+VoCEdAnLK2exwAEXV9lChoBkdAcOiX/o7muGgHS9xoCEdAnLM7Z8KG+XV9lChoBkdAcnPLL6k692gHS+FoCEdAnLROzhP0qnV9lChoBkdAcQXR6nivPmgHTRQBaAhHQJy0d5GBnSR1fZQoaAZHQHHV/vnbItFoB00AAWgIR0CctMlBhQWOdX2UKGgGR0BzheF0xM37aAdL4mgIR0CctV2CuloEdX2UKGgGR0Bu7xNRFZxJaAdNBAFoCEdAnLYWZZ0Sy3V9lChoBkdAb9m1UlzEJmgHS/toCEdAnLY47JW/8HV9lChoBkdAc0EwGW2PUGgHS+xoCEdAnLZc0k4WDnV9lChoBkdARyBWilBQemgHS8RoCEdAnLdVuFYdQ3V9lChoBkdAcXggCfYjB2gHS/VoCEdAnLfMpw0fo3V9lChoBkdAb3F16mfoR2gHS+loCEdAnLfnEAHVw3V9lChoBkdAOuS3w1BMSWgHS69oCEdAnLifnSv1UXV9lChoBkdAcmCzYEnss2gHS+doCEdAnLi+vt+kQHV9lChoBkdAc7sTHsC1Z2gHS/9oCEdAnLi/H5rP+nV9lChoBkdAbu5jurp7kWgHTSUBaAhHQJy5+AG0NSZ1fZQoaAZHQG9ubiIcinpoB0vyaAhHQJy6IgLZzxR1fZQoaAZHQEtvhjOLR8doB0uraAhHQJy6b6LwWnF1fZQoaAZHQG5DJIlMRHxoB0v/aAhHQJy751GLDQ91fZQoaAZHQG/EXJo0ygxoB0vsaAhHQJy8PrgOz6d1fZQoaAZHQHByupCKJl9oB0v6aAhHQJzOykGiYb91fZQoaAZHQHAVudf9gndoB0v6aAhHQJzPifVZs9B1fZQoaAZHQG1/2/JvHcVoB0vxaAhHQJzQAT+NtIl1fZQoaAZHQHHOX0se4kNoB0v7aAhHQJzQJPznRsx1fZQoaAZHQHFRD+m3vx9oB00EAWgIR0Cc0JWmxdIHdX2UKGgGR0BxSwaZQYUGaAdL1WgIR0Cc0RdjXnQqdX2UKGgGR0BvmmYlY2bYaAdNEwFoCEdAnNGv5Lytm3V9lChoBkdAcgfEytV7yGgHS/JoCEdAnNHF0gbIcXV9lChoBkdAcLJWcSXdCWgHS/BoCEdAnNHT+NtIkXV9lChoBkdAcaeBsANoamgHTQ8BaAhHQJzR8u01IiF1fZQoaAZHQHD874Fiay9oB0vuaAhHQJzSmiyprDZ1fZQoaAZHQHFQC8vmHQBoB0v6aAhHQJzTJ0OmR/51fZQoaAZHQHJmGlMyrPtoB00aAWgIR0Cc0610T101dX2UKGgGR0By6IrwvxpdaAdL7mgIR0Cc08gG8mKJdX2UKGgGR0Bt3V72L5ymaAdL72gIR0Cc1AWIGhVVdX2UKGgGR0BwGr/echC/aAdNeAFoCEdAnNQ5iqhlDnV9lChoBkdAclxdZ7ojfWgHS/toCEdAnNSroB7u2XV9lChoBkdAcsNVh1DBuWgHS+BoCEdAnNUvyPMjeXV9lChoBkdAcSK+so2GZmgHS+hoCEdAnNX4PPLPlnV9lChoBkdAc1d9SMtK7WgHTRQBaAhHQJzWBP9DQZ51fZQoaAZHQHNXSqhlDnhoB0vkaAhHQJzWXPGACnx1fZQoaAZHQHJsy3G4qgBoB00jAWgIR0Cc1uzwtrbhdX2UKGgGR0BwcazhP0qZaAdL42gIR0Cc1vpcophGdX2UKGgGR0BxIUyfthNNaAdL7mgIR0Cc1xoAXEZSdX2UKGgGR0Bx/Dm7rcCYaAdNBgFoCEdAnNe029+PR3V9lChoBkdAb/JkXk5p8GgHS+ZoCEdAnNfWFev6j3V9lChoBkdAcXB+XZ5AyGgHS9ZoCEdAnNgFlCkXUHV9lChoBkdAcW4tozvZy2gHTREBaAhHQJzYGfWcz691fZQoaAZHQHAL05hjOLRoB0voaAhHQJzZaQtBfKJ1fZQoaAZHQHHDeQQtjCpoB00CAWgIR0Cc2XQ6ZH/cdX2UKGgGR0BywlrJr+HaaAdL+2gIR0Cc2amgJ1JUdX2UKGgGR0Bw6vEdeY2LaAdNCgFoCEdAnNnBBNVR13V9lChoBkdAclv7gbZOBWgHS/ZoCEdAnNouvt+kQHV9lChoBkdAbwEeBg/kemgHS/9oCEdAnNrp2MbWE3V9lChoBkdAcgH4EfT1CmgHS+9oCEdAnNtDGLk0anV9lChoBkdAbXLwDvE0i2gHTQ4BaAhHQJzcDxusLfF1fZQoaAZHQHC87cbiqABoB0v1aAhHQJzce/j81oB1fZQoaAZHQHE2at5le4VoB00bAWgIR0Cc3MqoqCpWdX2UKGgGR0BwNmqvNeMRaAdL5GgIR0Cc3QtALRa5dX2UKGgGR0By9+OMl1KXaAdNDAFoCEdAnN0H0Cih4HV9lChoBkdAcXIcYZVGTmgHS+FoCEdAnN0usLfDUHV9lChoBkdAcEVNIbwSamgHS99oCEdAnN051vES/XV9lChoBkdAcA4iExqO92gHTQ4BaAhHQJzdPe1rqMZ1fZQoaAZHQHFue8XenAJoB00YAWgIR0Cc3gdz4k/sdX2UKGgGR0Bv8BkkKNQ1aAdL9GgIR0Cc3vV7hNucdX2UKGgGR0ByfQaQ3gk1aAdL7WgIR0Cc3xwW3z+WdX2UKGgGR0Bzs3k6tDD1aAdL/GgIR0Cc3ytcfNiZdX2UKGgGR0BwhXrMTviMaAdL+WgIR0Cc30RKHwgDdX2UKGgGR0BwlZsKsuFpaAdL52gIR0Cc32wAEMb4dX2UKGgGR0Btp7y8SPELaAdL+WgIR0Cc4HJrtVrAdX2UKGgGR0BzA5VrAP/aaAdL72gIR0Cc4JHBk7OndX2UKGgGR0BymU0waisXaAdL1GgIR0Cc4LFY+0PZdX2UKGgGR0Buzti6QNkOaAdL3WgIR0Cc4csijcmCdX2UKGgGR0BxPz101ZTyaAdL6GgIR0Cc4lTFVDKHdX2UKGgGR0BwnhHUc4o7aAdNBgFoCEdAnOJUsSTQmnV9lChoBkdAcH6LmZE2HmgHTQEBaAhHQJzihfkWAPN1fZQoaAZHQG6Llum78NxoB00JAWgIR0Cc4u3CsOoYdX2UKGgGR0BxX44BFNL2aAdNBAFoCEdAnOL/HtF8X3V9lChoBkdAcgpMYdhiLGgHTQcBaAhHQJzjBUZNwit1fZQoaAZHQHBlqMNtqHpoB0voaAhHQJzjNHMEA5t1fZQoaAZHQHJPYicG1QZoB0viaAhHQJzkMsRQJol1fZQoaAZHQHJ9U3Ov+wVoB0vkaAhHQJzkX8tPHkt1fZQoaAZHQG/OoJqqOtJoB0vzaAhHQJzkjcnE2pB1fZQoaAZHQG6lxNIsiB5oB0v7aAhHQJzlPJ/5Lyt1fZQoaAZHQHCshCD28I1oB0vaaAhHQJzmCIXTEzh1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 324,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73e4788895ecaa07fe769af90b5a891adc3de6ea6f4576cfd9c1dc1fbebbc0ee
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d09865df29dd96e82c9c23f410744394a424e281a299e0494702f6578b5a98b
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53f915571ca66ed222b0c4eb5d2b2257860f5f958c5793be6b5c51fabbed8e83
3
+ size 156583
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.55204150000003, "std_reward": 22.401412022076173, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-15T09:02:18.058676"}