|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionInpaintPipeline, |
|
StableDiffusionInpaintPipelineLegacy, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
VQModel, |
|
) |
|
from diffusers.utils import floats_tensor, load_image, slow, torch_device |
|
from diffusers.utils.testing_utils import load_numpy, require_torch_gpu |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionInpaintLegacyPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet_inpaint(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_stable_diffusion_inpaint_legacy(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
) |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_legacy_negative_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
negative_prompt = "french fries" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4765, 0.5339, 0.4541, 0.6240, 0.5439, 0.4055, 0.5503, 0.5891, 0.5150]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
).images |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
).images |
|
|
|
assert images.shape == (batch_size, 32, 32, 3) |
|
|
|
|
|
num_images_per_prompt = 2 |
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (num_images_per_prompt, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintLegacyPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_inpaint_legacy_pipeline(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint" |
|
"/red_cat_sitting_on_a_park_bench.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_inpaint_legacy_pipeline_k_lms(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint" |
|
"/red_cat_sitting_on_a_park_bench_k_lms.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
model_id, |
|
scheduler=lms, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_inpaint_legacy_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
test_callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 0: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.5472, 1.1218, -0.5505, -0.9390, -1.0794, 0.4063, 0.5158, 0.6429, -1.5246] |
|
) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
elif step == 37: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.4781, 1.1572, 0.6258, 0.2291, 0.2554, -0.1443, 0.7085, -0.1598, -0.5659]) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
test_callback_fn.has_been_called = False |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16 |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
mask_image=mask_image, |
|
strength=0.75, |
|
num_inference_steps=50, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
callback=test_callback_fn, |
|
callback_steps=1, |
|
) |
|
assert test_callback_fn.has_been_called |
|
assert number_of_steps == 38 |
|
|