|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionImg2ImgPipeline, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
VQModel, |
|
) |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet_inpaint(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_stable_diffusion_img2img_default_case(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(device) |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
) |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_negative_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(device) |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
negative_prompt = "french fries" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_multiple_init_images(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1) |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = 2 * ["A painting of a squirrel eating a burger"] |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[-1, -3:, -3:, -1] |
|
|
|
assert image.shape == (2, 32, 32, 3) |
|
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_k_lms(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
|
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(device) |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
) |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
return_dict=False, |
|
) |
|
image_from_tuple = output[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_num_images_per_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(device) |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
).images |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
).images |
|
|
|
assert images.shape == (batch_size, 32, 32, 3) |
|
|
|
|
|
num_images_per_prompt = 2 |
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (num_images_per_prompt, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3) |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_img2img_fp16(self): |
|
"""Test that stable diffusion img2img works with fp16""" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
init_image = self.dummy_image.to(torch_device) |
|
|
|
|
|
unet = unet.half() |
|
vae = vae.half() |
|
bert = bert.half() |
|
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
image = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="np", |
|
init_image=init_image, |
|
).images |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_img2img_pipeline_default(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 768, 3) |
|
|
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_pipeline_k_lms(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_k_lms.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
scheduler=lms, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 768, 3) |
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_pipeline_ddim(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_ddim.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
scheduler=ddim, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 768, 3) |
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
test_callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 0: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 96) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530]) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
elif step == 37: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 96) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828]) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
test_callback_fn.has_been_called = False |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
revision="fp16", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
strength=0.75, |
|
num_inference_steps=50, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
callback=test_callback_fn, |
|
callback_steps=1, |
|
) |
|
assert test_callback_fn.has_been_called |
|
assert number_of_steps == 38 |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, scheduler=lms, safety_checker=None, device_map="auto", revision="fp16", torch_dtype=torch.float16 |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
_ = pipe( |
|
prompt=prompt, |
|
init_image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
num_inference_steps=5, |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.2 * 10**9 |
|
|