|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import time |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
VQModel, |
|
logging, |
|
) |
|
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet_inpaint(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_stable_diffusion_ddim(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_ddim_factor_8(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
height=536, |
|
width=536, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 134, 134, 3) |
|
expected_slice = np.array([0.7834, 0.5488, 0.5781, 0.46, 0.3609, 0.5369, 0.542, 0.4855, 0.5557]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_no_safety_checker(self): |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None |
|
) |
|
assert isinstance(pipe, StableDiffusionPipeline) |
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) |
|
assert pipe.safety_checker is None |
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) |
|
|
|
|
|
assert pipe.safety_checker is None |
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
def test_stable_diffusion_k_lms(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler_ancestral(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = EulerDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_attention_chunk(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
|
|
sd_pipe.enable_attention_slicing(slice_size=1) |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_negative_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
negative_prompt = "french fries" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.4851, 0.4617, 0.4765, 0.5127, 0.4845, 0.5153, 0.5141, 0.4886, 0.4719]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_num_images_per_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images |
|
|
|
assert images.shape == (1, 128, 128, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images |
|
|
|
assert images.shape == (batch_size, 128, 128, 3) |
|
|
|
|
|
num_images_per_prompt = 2 |
|
images = sd_pipe( |
|
prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt |
|
).images |
|
|
|
assert images.shape == (num_images_per_prompt, 128, 128, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt |
|
).images |
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 128, 128, 3) |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_fp16(self): |
|
"""Test that stable diffusion works with fp16""" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
unet = unet.half() |
|
vae = vae.half() |
|
bert = bert.half() |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
|
|
def test_stable_diffusion_long_prompt(self): |
|
unet = self.dummy_cond_unet |
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
do_classifier_free_guidance = True |
|
negative_prompt = None |
|
num_images_per_prompt = 1 |
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") |
|
|
|
prompt = 25 * "@" |
|
with CaptureLogger(logger) as cap_logger_3: |
|
text_embeddings_3 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
prompt = 100 * "@" |
|
with CaptureLogger(logger) as cap_logger: |
|
text_embeddings = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
negative_prompt = "Hello" |
|
with CaptureLogger(logger) as cap_logger_2: |
|
text_embeddings_2 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape |
|
assert text_embeddings.shape[1] == 77 |
|
|
|
assert cap_logger.out == cap_logger_2.out |
|
|
|
assert cap_logger.out.count("@") == 25 |
|
assert cap_logger_3.out == "" |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion(self): |
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast("cuda"): |
|
output = sd_pipe( |
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np" |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_fast_ddim(self): |
|
scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-1", subfolder="scheduler") |
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", scheduler=scheduler) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
|
|
with torch.autocast("cuda"): |
|
output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_lms_stable_diffusion_pipeline(self): |
|
model_id = "CompVis/stable-diffusion-v1-1" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
scheduler = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe.scheduler = scheduler |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
image = pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
|
).images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_memory_chunking(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
output_chunked = pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
|
) |
|
image_chunked = output_chunked.images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 3.75 * 10**9 |
|
|
|
|
|
pipe.disable_attention_slicing() |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
output = pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
|
) |
|
image = output.images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 3.75 * 10**9 |
|
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3 |
|
|
|
def test_stable_diffusion_text2img_pipeline_fp16(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output_chunked = pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
|
) |
|
image_chunked = output_chunked.images |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
output = pipe( |
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
|
) |
|
image = output.images |
|
|
|
|
|
diff = np.abs(image_chunked.flatten() - image.flatten()) |
|
|
|
|
|
assert diff.mean() < 2e-2 |
|
|
|
def test_stable_diffusion_text2img_pipeline_default(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text2img/astronaut_riding_a_horse.npy" |
|
) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "astronaut riding a horse" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np") |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_stable_diffusion_text2img_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
test_callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 0: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506] |
|
) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
elif step == 50: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[1.1078, 1.5803, 0.2773, -0.0589, -1.7928, -0.3665, -0.4695, -1.0727, -1.1601] |
|
) |
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
test_callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "Andromeda galaxy in a bottle" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
with torch.autocast(torch_device): |
|
pipe( |
|
prompt=prompt, |
|
num_inference_steps=50, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
callback=test_callback_fn, |
|
callback_steps=1, |
|
) |
|
assert test_callback_fn.has_been_called |
|
assert number_of_steps == 51 |
|
|
|
def test_stable_diffusion_low_cpu_mem_usage(self): |
|
pipeline_id = "CompVis/stable-diffusion-v1-4" |
|
|
|
start_time = time.time() |
|
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained( |
|
pipeline_id, revision="fp16", torch_dtype=torch.float16 |
|
) |
|
pipeline_low_cpu_mem_usage.to(torch_device) |
|
low_cpu_mem_usage_time = time.time() - start_time |
|
|
|
start_time = time.time() |
|
_ = StableDiffusionPipeline.from_pretrained( |
|
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, low_cpu_mem_usage=False |
|
) |
|
normal_load_time = time.time() - start_time |
|
|
|
assert 2 * low_cpu_mem_usage_time < normal_load_time |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipeline_id = "CompVis/stable-diffusion-v1-4" |
|
prompt = "Andromeda galaxy in a bottle" |
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16) |
|
pipeline = pipeline.to(torch_device) |
|
pipeline.enable_attention_slicing(1) |
|
pipeline.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
_ = pipeline(prompt, generator=generator, num_inference_steps=5) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.8 * 10**9 |
|
|