killabee777 / tests /pipelines /stable_diffusion /test_onnx_stable_diffusion_inpaint.py
danielpikl's picture
Add stable diffusion weights
af7c068
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import is_onnx_available, load_image, require_onnxruntime, require_torch_gpu, slow
from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# FIXME: add fast tests
pass
@slow
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx"
)
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2520, 0.2743, 0.2643, 0.2641, 0.2517, 0.2650, 0.2498, 0.2688, 0.2529])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3