|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline |
|
from diffusers.utils.testing_utils import is_onnx_available, load_image, require_onnxruntime, require_torch_gpu, slow |
|
|
|
from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin |
|
|
|
|
|
if is_onnx_available(): |
|
import onnxruntime as ort |
|
|
|
|
|
class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): |
|
|
|
pass |
|
|
|
|
|
@slow |
|
@require_onnxruntime |
|
@require_torch_gpu |
|
class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): |
|
@property |
|
def gpu_provider(self): |
|
return ( |
|
"CUDAExecutionProvider", |
|
{ |
|
"gpu_mem_limit": "15000000000", |
|
"arena_extend_strategy": "kSameAsRequested", |
|
}, |
|
) |
|
|
|
@property |
|
def gpu_options(self): |
|
options = ort.SessionOptions() |
|
options.enable_mem_pattern = False |
|
return options |
|
|
|
def test_inference_default_pndm(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", |
|
revision="onnx", |
|
provider=self.gpu_provider, |
|
sess_options=self.gpu_options, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = np.random.RandomState(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
guidance_scale=7.5, |
|
num_inference_steps=10, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
images = output.images |
|
image_slice = images[0, 255:258, 255:258, -1] |
|
|
|
assert images.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_inference_k_lms(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
lms_scheduler = LMSDiscreteScheduler.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" |
|
) |
|
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", |
|
revision="onnx", |
|
scheduler=lms_scheduler, |
|
provider=self.gpu_provider, |
|
sess_options=self.gpu_options, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = np.random.RandomState(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
guidance_scale=7.5, |
|
num_inference_steps=10, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
images = output.images |
|
image_slice = images[0, 255:258, 255:258, -1] |
|
|
|
assert images.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.2520, 0.2743, 0.2643, 0.2641, 0.2517, 0.2650, 0.2498, 0.2688, 0.2529]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|