|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel, UNet2DModel, VQModel |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet_inpaint(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_stable_diffusion_cycle(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = CycleDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
source_prompt = "An astronaut riding a horse" |
|
prompt = "An astronaut riding an elephant" |
|
init_image = self.dummy_image.to(device) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
generator=generator, |
|
num_inference_steps=2, |
|
init_image=init_image, |
|
eta=0.1, |
|
strength=0.8, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
output_type="np", |
|
) |
|
images = output.images |
|
|
|
image_slice = images[0, -3:, -3:, -1] |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_cycle_fp16(self): |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
unet = unet.half() |
|
vae = vae.half() |
|
bert = bert.half() |
|
|
|
|
|
sd_pipe = CycleDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
source_prompt = "An astronaut riding a horse" |
|
prompt = "An astronaut riding an elephant" |
|
init_image = self.dummy_image.to(torch_device) |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
generator=generator, |
|
num_inference_steps=2, |
|
init_image=init_image, |
|
eta=0.1, |
|
strength=0.8, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
output_type="np", |
|
) |
|
images = output.images |
|
|
|
image_slice = images[0, -3:, -3:, -1] |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_cycle_diffusion_pipeline_fp16(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/cycle-diffusion/black_colored_car.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = CycleDiffusionPipeline.from_pretrained( |
|
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16" |
|
) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
source_prompt = "A black colored car" |
|
prompt = "A blue colored car" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
init_image=init_image, |
|
num_inference_steps=100, |
|
eta=0.1, |
|
strength=0.85, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
|
|
assert np.abs(image - expected_image).max() < 5e-1 |
|
|
|
def test_cycle_diffusion_pipeline(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/cycle-diffusion/black_colored_car.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
source_prompt = "A black colored car" |
|
prompt = "A blue colored car" |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
init_image=init_image, |
|
num_inference_steps=100, |
|
eta=0.1, |
|
strength=0.85, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
assert np.abs(image - expected_image).max() < 1e-2 |
|
|