|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel |
|
from diffusers.utils.testing_utils import require_torch, slow, torch_device |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
def test_inference_text2img(self): |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler() |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
ldm.to(torch_device) |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
if torch_device == "mps": |
|
generator = torch.manual_seed(0) |
|
_ = ldm( |
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy" |
|
).images |
|
|
|
generator = torch.manual_seed(0) |
|
image = ldm( |
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy" |
|
).images |
|
|
|
generator = torch.manual_seed(0) |
|
image_from_tuple = ldm( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="numpy", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch |
|
class LDMTextToImagePipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_text2img(self): |
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256") |
|
ldm.to(torch_device) |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
image = ldm( |
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy" |
|
).images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_inference_text2img_fast(self): |
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256") |
|
ldm.to(torch_device) |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|