|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel |
|
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device |
|
|
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
unet = self.dummy_uncond_unet |
|
scheduler = DDIMScheduler() |
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array( |
|
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] |
|
) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class DDIMPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_ema_bedroom(self): |
|
model_id = "google/ddpm-ema-bedroom-256" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = DDIMScheduler.from_pretrained(model_id) |
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(torch_device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
image = ddpm(generator=generator, output_type="numpy").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.1546, 0.1561, 0.1595, 0.1564, 0.1569, 0.1585, 0.1554, 0.1550, 0.1575]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_inference_cifar10(self): |
|
model_id = "google/ddpm-cifar10-32" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = DDIMScheduler() |
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=scheduler) |
|
ddim.to(torch_device) |
|
ddim.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
image = ddim(generator=generator, eta=0.0, output_type="numpy").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.2060, 0.2042, 0.2022, 0.2193, 0.2146, 0.2110, 0.2471, 0.2446, 0.2388]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|