|
import argparse |
|
import math |
|
import os |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from datasets import load_dataset |
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel |
|
from diffusers.hub_utils import init_git_repo, push_to_hub |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from onnxruntime.training.ortmodule import ORTModule |
|
from torchvision.transforms import ( |
|
CenterCrop, |
|
Compose, |
|
InterpolationMode, |
|
Normalize, |
|
RandomHorizontalFlip, |
|
Resize, |
|
ToTensor, |
|
) |
|
from tqdm.auto import tqdm |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def main(args): |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
model = UNet2DModel( |
|
sample_size=args.resolution, |
|
in_channels=3, |
|
out_channels=3, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128, 256, 256, 512, 512), |
|
down_block_types=( |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"AttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
up_block_types=( |
|
"UpBlock2D", |
|
"AttnUpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
), |
|
) |
|
model = ORTModule(model) |
|
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt") |
|
optimizer = torch.optim.AdamW( |
|
model.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
augmentations = Compose( |
|
[ |
|
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), |
|
CenterCrop(args.resolution), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
if args.dataset_name is not None: |
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
use_auth_token=True if args.use_auth_token else None, |
|
split="train", |
|
) |
|
else: |
|
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") |
|
|
|
def transforms(examples): |
|
images = [augmentations(image.convert("RGB")) for image in examples["image"]] |
|
return {"input": images} |
|
|
|
dataset.set_transform(transforms) |
|
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps, |
|
) |
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
|
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay) |
|
|
|
if args.push_to_hub: |
|
repo = init_git_repo(args, at_init=True) |
|
|
|
if accelerator.is_main_process: |
|
run = os.path.split(__file__)[-1].split(".")[0] |
|
accelerator.init_trackers(run) |
|
|
|
global_step = 0 |
|
for epoch in range(args.num_epochs): |
|
model.train() |
|
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description(f"Epoch {epoch}") |
|
for step, batch in enumerate(train_dataloader): |
|
clean_images = batch["input"] |
|
|
|
noise = torch.randn(clean_images.shape).to(clean_images.device) |
|
bsz = clean_images.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device |
|
).long() |
|
|
|
|
|
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) |
|
|
|
with accelerator.accumulate(model): |
|
|
|
noise_pred = model(noisy_images, timesteps, return_dict=True)[0] |
|
loss = F.mse_loss(noise_pred, noise) |
|
accelerator.backward(loss) |
|
|
|
accelerator.clip_grad_norm_(model.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
if args.use_ema: |
|
ema_model.step(model) |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} |
|
if args.use_ema: |
|
logs["ema_decay"] = ema_model.decay |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
progress_bar.close() |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: |
|
pipeline = DDPMPipeline( |
|
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model), |
|
scheduler=noise_scheduler, |
|
) |
|
|
|
generator = torch.manual_seed(0) |
|
|
|
images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images |
|
|
|
|
|
images_processed = (images * 255).round().astype("uint8") |
|
accelerator.trackers[0].writer.add_images( |
|
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch |
|
) |
|
|
|
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: |
|
|
|
if args.push_to_hub: |
|
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False) |
|
else: |
|
pipeline.save_pretrained(args.output_dir) |
|
accelerator.wait_for_everyone() |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument("--local_rank", type=int, default=-1) |
|
parser.add_argument("--dataset_name", type=str, default=None) |
|
parser.add_argument("--dataset_config_name", type=str, default=None) |
|
parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.") |
|
parser.add_argument("--output_dir", type=str, default="ddpm-model-64") |
|
parser.add_argument("--overwrite_output_dir", action="store_true") |
|
parser.add_argument("--cache_dir", type=str, default=None) |
|
parser.add_argument("--resolution", type=int, default=64) |
|
parser.add_argument("--train_batch_size", type=int, default=16) |
|
parser.add_argument("--eval_batch_size", type=int, default=16) |
|
parser.add_argument("--num_epochs", type=int, default=100) |
|
parser.add_argument("--save_images_epochs", type=int, default=10) |
|
parser.add_argument("--save_model_epochs", type=int, default=10) |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1) |
|
parser.add_argument("--learning_rate", type=float, default=1e-4) |
|
parser.add_argument("--lr_scheduler", type=str, default="cosine") |
|
parser.add_argument("--lr_warmup_steps", type=int, default=500) |
|
parser.add_argument("--adam_beta1", type=float, default=0.95) |
|
parser.add_argument("--adam_beta2", type=float, default=0.999) |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-6) |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08) |
|
parser.add_argument("--use_ema", action="store_true", default=True) |
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0) |
|
parser.add_argument("--ema_power", type=float, default=3 / 4) |
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999) |
|
parser.add_argument("--push_to_hub", action="store_true") |
|
parser.add_argument("--use_auth_token", action="store_true") |
|
parser.add_argument("--hub_token", type=str, default=None) |
|
parser.add_argument("--hub_model_id", type=str, default=None) |
|
parser.add_argument("--hub_private_repo", action="store_true") |
|
parser.add_argument("--logging_dir", type=str, default="logs") |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("You must specify either a dataset name from the hub or a train data directory.") |
|
|
|
main(args) |
|
|