|
import argparse |
|
import inspect |
|
import math |
|
import os |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from datasets import load_dataset |
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel, __version__ |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import deprecate |
|
from huggingface_hub import HfFolder, Repository, whoami |
|
from packaging import version |
|
from torchvision.transforms import ( |
|
CenterCrop, |
|
Compose, |
|
InterpolationMode, |
|
Normalize, |
|
RandomHorizontalFlip, |
|
Resize, |
|
ToTensor, |
|
) |
|
from tqdm.auto import tqdm |
|
|
|
|
|
logger = get_logger(__name__) |
|
diffusers_version = version.parse(version.parse(__version__).base_version) |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
if not isinstance(arr, torch.Tensor): |
|
arr = torch.from_numpy(arr) |
|
res = arr[timesteps].float().to(timesteps.device) |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that HF Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="ddpm-model-64", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--overwrite_output_dir", action="store_true") |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=64, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" |
|
" process." |
|
), |
|
) |
|
parser.add_argument("--num_epochs", type=int, default=100) |
|
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") |
|
parser.add_argument( |
|
"--save_model_epochs", type=int, default=10, help="How often to save the model during training." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="cosine", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument( |
|
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." |
|
) |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") |
|
parser.add_argument( |
|
"--use_ema", |
|
action="store_true", |
|
default=True, |
|
help="Whether to use Exponential Moving Average for the final model weights.", |
|
) |
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") |
|
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") |
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository." |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--predict_epsilon", |
|
action="store_true", |
|
default=True, |
|
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", |
|
) |
|
|
|
parser.add_argument("--ddpm_num_steps", type=int, default=1000) |
|
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("You must specify either a dataset name from the hub or a train data directory.") |
|
|
|
return args |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def main(args): |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
model = UNet2DModel( |
|
sample_size=args.resolution, |
|
in_channels=3, |
|
out_channels=3, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128, 256, 256, 512, 512), |
|
down_block_types=( |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"AttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
up_block_types=( |
|
"UpBlock2D", |
|
"AttnUpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
), |
|
) |
|
accepts_predict_epsilon = "predict_epsilon" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) |
|
|
|
if accepts_predict_epsilon: |
|
noise_scheduler = DDPMScheduler( |
|
num_train_timesteps=args.ddpm_num_steps, |
|
beta_schedule=args.ddpm_beta_schedule, |
|
predict_epsilon=args.predict_epsilon, |
|
) |
|
else: |
|
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) |
|
|
|
optimizer = torch.optim.AdamW( |
|
model.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
augmentations = Compose( |
|
[ |
|
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), |
|
CenterCrop(args.resolution), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
if args.dataset_name is not None: |
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
split="train", |
|
) |
|
else: |
|
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") |
|
|
|
def transforms(examples): |
|
images = [augmentations(image.convert("RGB")) for image in examples["image"]] |
|
return {"input": images} |
|
|
|
logger.info(f"Dataset size: {len(dataset)}") |
|
|
|
dataset.set_transform(transforms) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps, |
|
) |
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
|
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
repo = Repository(args.output_dir, clone_from=repo_name) |
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "step_*" not in gitignore: |
|
gitignore.write("step_*\n") |
|
if "epoch_*" not in gitignore: |
|
gitignore.write("epoch_*\n") |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if accelerator.is_main_process: |
|
run = os.path.split(__file__)[-1].split(".")[0] |
|
accelerator.init_trackers(run) |
|
|
|
global_step = 0 |
|
for epoch in range(args.num_epochs): |
|
model.train() |
|
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description(f"Epoch {epoch}") |
|
for step, batch in enumerate(train_dataloader): |
|
clean_images = batch["input"] |
|
|
|
noise = torch.randn(clean_images.shape).to(clean_images.device) |
|
bsz = clean_images.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device |
|
).long() |
|
|
|
|
|
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) |
|
|
|
with accelerator.accumulate(model): |
|
|
|
model_output = model(noisy_images, timesteps).sample |
|
|
|
if args.predict_epsilon: |
|
loss = F.mse_loss(model_output, noise) |
|
else: |
|
alpha_t = _extract_into_tensor( |
|
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) |
|
) |
|
snr_weights = alpha_t / (1 - alpha_t) |
|
loss = snr_weights * F.mse_loss( |
|
model_output, clean_images, reduction="none" |
|
) |
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
|
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(model.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
if args.use_ema: |
|
ema_model.step(model) |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} |
|
if args.use_ema: |
|
logs["ema_decay"] = ema_model.decay |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
progress_bar.close() |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: |
|
pipeline = DDPMPipeline( |
|
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model), |
|
scheduler=noise_scheduler, |
|
) |
|
|
|
deprecate("todo: remove this check", "0.10.0", "when the most used version is >= 0.8.0") |
|
if diffusers_version < version.parse("0.8.0"): |
|
generator = torch.manual_seed(0) |
|
else: |
|
generator = torch.Generator(device=pipeline.device).manual_seed(0) |
|
|
|
images = pipeline( |
|
generator=generator, |
|
batch_size=args.eval_batch_size, |
|
output_type="numpy", |
|
).images |
|
|
|
|
|
images_processed = (images * 255).round().astype("uint8") |
|
accelerator.trackers[0].writer.add_images( |
|
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch |
|
) |
|
|
|
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: |
|
|
|
pipeline.save_pretrained(args.output_dir) |
|
if args.push_to_hub: |
|
repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False) |
|
accelerator.wait_for_everyone() |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|