File size: 4,134 Bytes
af7c068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa

from ..utils import DummyObject, requires_backends


class AltDiffusionImg2ImgPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class AltDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class CycleDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class LDMTextToImagePipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionInpaintPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VQDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])