--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whister test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ko split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 34.87394957983193 --- # whister test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5798 - Wer: 34.8739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0008 | 22.2222 | 1000 | 0.4828 | 33.4989 | | 0.0003 | 44.4444 | 2000 | 0.5277 | 34.2246 | | 0.0001 | 66.6667 | 3000 | 0.5551 | 34.6830 | | 0.0001 | 88.8889 | 4000 | 0.5718 | 34.7976 | | 0.0001 | 111.1111 | 5000 | 0.5798 | 34.8739 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1