“sayehs”
commited on
Commit
·
6a8a059
1
Parent(s):
791b61d
custom modeling of gpt-j-6b
Browse files- config.json +4 -1
- configuration_gptj.py +239 -0
- modeling_gptj.py +1247 -0
config.json
CHANGED
|
@@ -3,6 +3,10 @@
|
|
| 3 |
"architectures": [
|
| 4 |
"GPTJForCausalLM"
|
| 5 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"attn_pdrop": 0.0,
|
| 7 |
"bos_token_id": 50256,
|
| 8 |
"embd_pdrop": 0.0,
|
|
@@ -34,7 +38,6 @@
|
|
| 34 |
},
|
| 35 |
"tie_word_embeddings": false,
|
| 36 |
"tokenizer_class": "GPT2Tokenizer",
|
| 37 |
-
"transformers_version": "4.18.0.dev0",
|
| 38 |
"use_cache": true,
|
| 39 |
"vocab_size": 50400
|
| 40 |
}
|
|
|
|
| 3 |
"architectures": [
|
| 4 |
"GPTJForCausalLM"
|
| 5 |
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_gptj.GPTJConfig",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_gptj.GPTJForCausalLM"
|
| 9 |
+
},
|
| 10 |
"attn_pdrop": 0.0,
|
| 11 |
"bos_token_id": 50256,
|
| 12 |
"embd_pdrop": 0.0,
|
|
|
|
| 38 |
},
|
| 39 |
"tie_word_embeddings": false,
|
| 40 |
"tokenizer_class": "GPT2Tokenizer",
|
|
|
|
| 41 |
"use_cache": true,
|
| 42 |
"vocab_size": 50400
|
| 43 |
}
|
configuration_gptj.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" GPT-J model configuration"""
|
| 16 |
+
from collections import OrderedDict
|
| 17 |
+
from typing import Any, List, Mapping, Optional
|
| 18 |
+
|
| 19 |
+
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 28 |
+
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
|
| 29 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class GPTJConfig(PretrainedConfig):
|
| 34 |
+
r"""
|
| 35 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
| 36 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 37 |
+
defaults will yield a similar configuration to that of the GPT-J
|
| 38 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
| 39 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
| 40 |
+
for more information.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
| 44 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
| 45 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
| 46 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
| 47 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 48 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 49 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
| 50 |
+
Dimensionality of the embeddings and hidden states.
|
| 51 |
+
n_layer (`int`, *optional*, defaults to 28):
|
| 52 |
+
Number of hidden layers in the Transformer encoder.
|
| 53 |
+
n_head (`int`, *optional*, defaults to 16):
|
| 54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 55 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
| 56 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
| 57 |
+
n_inner (`int`, *optional*, defaults to None):
|
| 58 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
| 59 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
| 60 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
| 61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
| 62 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
| 64 |
+
The dropout ratio for the embeddings.
|
| 65 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
| 66 |
+
The dropout ratio for the attention.
|
| 67 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 68 |
+
The epsilon to use in the layer normalization layers.
|
| 69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 72 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 73 |
+
|
| 74 |
+
Example:
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
>>> from transformers import GPTJModel, GPTJConfig
|
| 78 |
+
|
| 79 |
+
>>> # Initializing a GPT-J 6B configuration
|
| 80 |
+
>>> configuration = GPTJConfig()
|
| 81 |
+
|
| 82 |
+
>>> # Initializing a model from the configuration
|
| 83 |
+
>>> model = GPTJModel(configuration)
|
| 84 |
+
|
| 85 |
+
>>> # Accessing the model configuration
|
| 86 |
+
>>> configuration = model.config
|
| 87 |
+
```"""
|
| 88 |
+
|
| 89 |
+
model_type = "gptj"
|
| 90 |
+
attribute_map = {
|
| 91 |
+
"max_position_embeddings": "n_positions",
|
| 92 |
+
"hidden_size": "n_embd",
|
| 93 |
+
"num_attention_heads": "n_head",
|
| 94 |
+
"num_hidden_layers": "n_layer",
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
vocab_size=50400,
|
| 100 |
+
n_positions=2048,
|
| 101 |
+
n_embd=4096,
|
| 102 |
+
n_layer=28,
|
| 103 |
+
n_head=16,
|
| 104 |
+
rotary_dim=64,
|
| 105 |
+
n_inner=None,
|
| 106 |
+
activation_function="gelu_new",
|
| 107 |
+
resid_pdrop=0.0,
|
| 108 |
+
embd_pdrop=0.0,
|
| 109 |
+
attn_pdrop=0.0,
|
| 110 |
+
layer_norm_epsilon=1e-5,
|
| 111 |
+
initializer_range=0.02,
|
| 112 |
+
use_cache=True,
|
| 113 |
+
bos_token_id=50256,
|
| 114 |
+
eos_token_id=50256,
|
| 115 |
+
tie_word_embeddings=False,
|
| 116 |
+
**kwargs,
|
| 117 |
+
):
|
| 118 |
+
self.vocab_size = vocab_size
|
| 119 |
+
self.n_positions = n_positions
|
| 120 |
+
self.n_embd = n_embd
|
| 121 |
+
self.n_layer = n_layer
|
| 122 |
+
self.n_head = n_head
|
| 123 |
+
self.n_inner = n_inner
|
| 124 |
+
self.rotary_dim = rotary_dim
|
| 125 |
+
self.activation_function = activation_function
|
| 126 |
+
self.resid_pdrop = resid_pdrop
|
| 127 |
+
self.embd_pdrop = embd_pdrop
|
| 128 |
+
self.attn_pdrop = attn_pdrop
|
| 129 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 130 |
+
self.initializer_range = initializer_range
|
| 131 |
+
self.use_cache = use_cache
|
| 132 |
+
|
| 133 |
+
self.bos_token_id = bos_token_id
|
| 134 |
+
self.eos_token_id = eos_token_id
|
| 135 |
+
|
| 136 |
+
super().__init__(
|
| 137 |
+
bos_token_id=bos_token_id,
|
| 138 |
+
eos_token_id=eos_token_id,
|
| 139 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 140 |
+
**kwargs,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
| 145 |
+
class GPTJOnnxConfig(OnnxConfigWithPast):
|
| 146 |
+
def __init__(
|
| 147 |
+
self,
|
| 148 |
+
config: PretrainedConfig,
|
| 149 |
+
task: str = "default",
|
| 150 |
+
patching_specs: List[PatchingSpec] = None,
|
| 151 |
+
use_past: bool = False,
|
| 152 |
+
):
|
| 153 |
+
super().__init__(
|
| 154 |
+
config, task=task, patching_specs=patching_specs, use_past=use_past
|
| 155 |
+
)
|
| 156 |
+
if not getattr(self._config, "pad_token_id", None):
|
| 157 |
+
# TODO: how to do that better?
|
| 158 |
+
self._config.pad_token_id = 0
|
| 159 |
+
|
| 160 |
+
@property
|
| 161 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 162 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
| 163 |
+
if self.use_past:
|
| 164 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
| 165 |
+
common_inputs["attention_mask"] = {
|
| 166 |
+
0: "batch",
|
| 167 |
+
1: "past_sequence + sequence",
|
| 168 |
+
}
|
| 169 |
+
else:
|
| 170 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
| 171 |
+
|
| 172 |
+
return common_inputs
|
| 173 |
+
|
| 174 |
+
@property
|
| 175 |
+
def num_layers(self) -> int:
|
| 176 |
+
return self._config.n_layer
|
| 177 |
+
|
| 178 |
+
@property
|
| 179 |
+
def num_attention_heads(self) -> int:
|
| 180 |
+
return self._config.n_head
|
| 181 |
+
|
| 182 |
+
def generate_dummy_inputs(
|
| 183 |
+
self,
|
| 184 |
+
tokenizer: PreTrainedTokenizer,
|
| 185 |
+
batch_size: int = -1,
|
| 186 |
+
seq_length: int = -1,
|
| 187 |
+
is_pair: bool = False,
|
| 188 |
+
framework: Optional[TensorType] = None,
|
| 189 |
+
) -> Mapping[str, Any]:
|
| 190 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
| 191 |
+
tokenizer,
|
| 192 |
+
batch_size=batch_size,
|
| 193 |
+
seq_length=seq_length,
|
| 194 |
+
is_pair=is_pair,
|
| 195 |
+
framework=framework,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# We need to order the input in the way they appears in the forward()
|
| 199 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
| 200 |
+
|
| 201 |
+
# Need to add the past_keys
|
| 202 |
+
if self.use_past:
|
| 203 |
+
if not is_torch_available():
|
| 204 |
+
raise ValueError(
|
| 205 |
+
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
import torch
|
| 209 |
+
|
| 210 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
| 211 |
+
# Not using the same length for past_key_values
|
| 212 |
+
past_key_values_length = seqlen + 2
|
| 213 |
+
past_shape = (
|
| 214 |
+
batch,
|
| 215 |
+
self.num_attention_heads,
|
| 216 |
+
past_key_values_length,
|
| 217 |
+
self._config.hidden_size // self.num_attention_heads,
|
| 218 |
+
)
|
| 219 |
+
ordered_inputs["past_key_values"] = [
|
| 220 |
+
(torch.zeros(past_shape), torch.zeros(past_shape))
|
| 221 |
+
for _ in range(self.num_layers)
|
| 222 |
+
]
|
| 223 |
+
|
| 224 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
| 225 |
+
if self.use_past:
|
| 226 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
| 227 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
| 228 |
+
[
|
| 229 |
+
ordered_inputs["attention_mask"],
|
| 230 |
+
torch.ones(batch, past_key_values_length, dtype=mask_dtype),
|
| 231 |
+
],
|
| 232 |
+
dim=1,
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
return ordered_inputs
|
| 236 |
+
|
| 237 |
+
@property
|
| 238 |
+
def default_onnx_opset(self) -> int:
|
| 239 |
+
return 13
|
modeling_gptj.py
ADDED
|
@@ -0,0 +1,1247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch GPT-J model."""
|
| 16 |
+
|
| 17 |
+
import warnings
|
| 18 |
+
from typing import Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.fx
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.modeling_outputs import (
|
| 28 |
+
BaseModelOutputWithPast,
|
| 29 |
+
CausalLMOutputWithPast,
|
| 30 |
+
QuestionAnsweringModelOutput,
|
| 31 |
+
SequenceClassifierOutputWithPast,
|
| 32 |
+
)
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import (
|
| 35 |
+
add_code_sample_docstrings,
|
| 36 |
+
add_start_docstrings,
|
| 37 |
+
add_start_docstrings_to_model_forward,
|
| 38 |
+
is_torch_fx_proxy,
|
| 39 |
+
logging,
|
| 40 |
+
)
|
| 41 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 42 |
+
from .configuration_gptj import GPTJConfig
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
|
| 48 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
| 49 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 53 |
+
"EleutherAI/gpt-j-6B",
|
| 54 |
+
# See all GPT-J models at https://huggingface.co/models?filter=gptj
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
| 59 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
| 60 |
+
sinusoid_inp = torch.einsum(
|
| 61 |
+
"i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq
|
| 62 |
+
).float()
|
| 63 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@torch.fx.wrap
|
| 67 |
+
def get_embed_positions(embed_positions, position_ids):
|
| 68 |
+
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
| 72 |
+
x1 = x[:, :, :, ::2]
|
| 73 |
+
x2 = x[:, :, :, 1::2]
|
| 74 |
+
x = torch.stack((-x2, x1), dim=-1)
|
| 75 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def apply_rotary_pos_emb(
|
| 79 |
+
tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor
|
| 80 |
+
) -> torch.Tensor:
|
| 81 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
| 82 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
| 83 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class GPTJAttention(nn.Module):
|
| 87 |
+
def __init__(self, config):
|
| 88 |
+
super().__init__()
|
| 89 |
+
|
| 90 |
+
max_positions = config.max_position_embeddings
|
| 91 |
+
self.register_buffer(
|
| 92 |
+
"bias",
|
| 93 |
+
torch.tril(
|
| 94 |
+
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
| 95 |
+
).view(1, 1, max_positions, max_positions),
|
| 96 |
+
persistent=False,
|
| 97 |
+
)
|
| 98 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
| 99 |
+
|
| 100 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 101 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 102 |
+
|
| 103 |
+
self.embed_dim = config.hidden_size
|
| 104 |
+
self.num_attention_heads = config.num_attention_heads
|
| 105 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
| 106 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
| 107 |
+
raise ValueError(
|
| 108 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
| 109 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
| 110 |
+
)
|
| 111 |
+
self.scale_attn = torch.sqrt(
|
| 112 |
+
torch.tensor(self.head_dim, dtype=torch.float32)
|
| 113 |
+
).to(torch.get_default_dtype())
|
| 114 |
+
|
| 115 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 116 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 117 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 118 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 119 |
+
self.rotary_dim = config.rotary_dim
|
| 120 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
| 121 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
| 122 |
+
|
| 123 |
+
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
| 124 |
+
"""
|
| 125 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
| 126 |
+
"""
|
| 127 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
| 128 |
+
tensor = tensor.view(new_shape)
|
| 129 |
+
if rotary:
|
| 130 |
+
return tensor
|
| 131 |
+
if len(tensor.shape) == 5:
|
| 132 |
+
return tensor.permute(
|
| 133 |
+
0, 1, 3, 2, 4
|
| 134 |
+
) # (batch, blocks, head, block_length, head_features)
|
| 135 |
+
elif len(tensor.shape) == 4:
|
| 136 |
+
return tensor.permute(
|
| 137 |
+
0, 2, 1, 3
|
| 138 |
+
) # (batch, head, seq_length, head_features)
|
| 139 |
+
else:
|
| 140 |
+
raise ValueError(
|
| 141 |
+
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}"
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
| 145 |
+
"""
|
| 146 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
| 147 |
+
"""
|
| 148 |
+
if len(tensor.shape) == 5:
|
| 149 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
| 150 |
+
elif len(tensor.shape) == 4:
|
| 151 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 152 |
+
else:
|
| 153 |
+
raise ValueError(
|
| 154 |
+
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}"
|
| 155 |
+
)
|
| 156 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
| 157 |
+
return tensor.view(new_shape)
|
| 158 |
+
|
| 159 |
+
def _attn(
|
| 160 |
+
self,
|
| 161 |
+
query,
|
| 162 |
+
key,
|
| 163 |
+
value,
|
| 164 |
+
attention_mask=None,
|
| 165 |
+
head_mask=None,
|
| 166 |
+
):
|
| 167 |
+
# compute causal mask from causal mask buffer
|
| 168 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 169 |
+
causal_mask = self.bias[
|
| 170 |
+
:, :, key_length - query_length : key_length, :key_length
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
| 174 |
+
query = query.to(torch.float32)
|
| 175 |
+
key = key.to(torch.float32)
|
| 176 |
+
|
| 177 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 178 |
+
|
| 179 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 180 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 181 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 182 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
| 183 |
+
attn_weights.device
|
| 184 |
+
)
|
| 185 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 186 |
+
|
| 187 |
+
attn_weights = attn_weights / self.scale_attn
|
| 188 |
+
|
| 189 |
+
if attention_mask is not None:
|
| 190 |
+
# Apply the attention mask
|
| 191 |
+
attn_weights = attn_weights + attention_mask
|
| 192 |
+
|
| 193 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 194 |
+
attn_weights = attn_weights.to(value.dtype)
|
| 195 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 196 |
+
|
| 197 |
+
# Mask heads if we want to
|
| 198 |
+
if head_mask is not None:
|
| 199 |
+
attn_weights = attn_weights * head_mask
|
| 200 |
+
|
| 201 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 202 |
+
|
| 203 |
+
return attn_output, attn_weights
|
| 204 |
+
|
| 205 |
+
def _get_embed_positions(self, position_ids):
|
| 206 |
+
embed_positions = self.embed_positions
|
| 207 |
+
if embed_positions.device != position_ids.device:
|
| 208 |
+
embed_positions = embed_positions.to(position_ids.device)
|
| 209 |
+
self.embed_positions = embed_positions
|
| 210 |
+
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
| 211 |
+
|
| 212 |
+
def forward(
|
| 213 |
+
self,
|
| 214 |
+
hidden_states: torch.FloatTensor,
|
| 215 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 216 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 217 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 218 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 219 |
+
use_cache: Optional[bool] = False,
|
| 220 |
+
output_attentions: Optional[bool] = False,
|
| 221 |
+
) -> Union[
|
| 222 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
| 223 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
| 224 |
+
]:
|
| 225 |
+
query = self.q_proj(hidden_states)
|
| 226 |
+
key = self.k_proj(hidden_states)
|
| 227 |
+
value = self.v_proj(hidden_states)
|
| 228 |
+
|
| 229 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
| 230 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
| 231 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
| 232 |
+
|
| 233 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
| 234 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
| 235 |
+
# every time in the torch.fx case
|
| 236 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
| 237 |
+
else:
|
| 238 |
+
embed_positions = self._get_embed_positions(position_ids)
|
| 239 |
+
|
| 240 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(
|
| 241 |
+
1, 1, embed_positions.shape[-1]
|
| 242 |
+
)
|
| 243 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
| 244 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
| 245 |
+
|
| 246 |
+
if self.rotary_dim is not None:
|
| 247 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
| 248 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
| 249 |
+
|
| 250 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
| 251 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
| 252 |
+
|
| 253 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
| 254 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
| 255 |
+
|
| 256 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
| 257 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
| 258 |
+
else:
|
| 259 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
| 260 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
| 261 |
+
|
| 262 |
+
key = key.permute(0, 2, 1, 3)
|
| 263 |
+
query = query.permute(0, 2, 1, 3)
|
| 264 |
+
|
| 265 |
+
if layer_past is not None:
|
| 266 |
+
past_key = layer_past[0]
|
| 267 |
+
past_value = layer_past[1]
|
| 268 |
+
key = torch.cat((past_key, key), dim=-2)
|
| 269 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 270 |
+
|
| 271 |
+
if use_cache is True:
|
| 272 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
| 273 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
| 274 |
+
present = (key.to(hidden_states.dtype), value)
|
| 275 |
+
else:
|
| 276 |
+
present = None
|
| 277 |
+
|
| 278 |
+
# compute self-attention: V x Softmax(QK^T)
|
| 279 |
+
attn_output, attn_weights = self._attn(
|
| 280 |
+
query, key, value, attention_mask, head_mask
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
attn_output = self._merge_heads(
|
| 284 |
+
attn_output, self.num_attention_heads, self.head_dim
|
| 285 |
+
)
|
| 286 |
+
attn_output = self.out_proj(attn_output)
|
| 287 |
+
attn_output = self.resid_dropout(attn_output)
|
| 288 |
+
|
| 289 |
+
outputs = (attn_output, present)
|
| 290 |
+
if output_attentions:
|
| 291 |
+
outputs += (attn_weights,)
|
| 292 |
+
|
| 293 |
+
return outputs # a, present, (attentions)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
class GPTJMLP(nn.Module):
|
| 297 |
+
def __init__(
|
| 298 |
+
self, intermediate_size, config
|
| 299 |
+
): # in MLP: intermediate_size= 4 * embed_dim
|
| 300 |
+
super().__init__()
|
| 301 |
+
embed_dim = config.n_embd
|
| 302 |
+
|
| 303 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
| 304 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
| 305 |
+
|
| 306 |
+
self.act = ACT2FN[config.activation_function]
|
| 307 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 308 |
+
|
| 309 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
| 310 |
+
hidden_states = self.fc_in(hidden_states)
|
| 311 |
+
hidden_states = self.act(hidden_states)
|
| 312 |
+
hidden_states = self.fc_out(hidden_states)
|
| 313 |
+
hidden_states = self.dropout(hidden_states)
|
| 314 |
+
return hidden_states
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class GPTJBlock(nn.Module):
|
| 318 |
+
def __init__(self, config):
|
| 319 |
+
super().__init__()
|
| 320 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
| 321 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 322 |
+
self.attn = GPTJAttention(config)
|
| 323 |
+
self.mlp = GPTJMLP(inner_dim, config)
|
| 324 |
+
|
| 325 |
+
def forward(
|
| 326 |
+
self,
|
| 327 |
+
hidden_states: Optional[torch.FloatTensor],
|
| 328 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 329 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 330 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 331 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 332 |
+
use_cache: Optional[bool] = False,
|
| 333 |
+
output_attentions: Optional[bool] = False,
|
| 334 |
+
) -> Union[
|
| 335 |
+
Tuple[torch.Tensor],
|
| 336 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]],
|
| 337 |
+
]:
|
| 338 |
+
residual = hidden_states
|
| 339 |
+
hidden_states = self.ln_1(hidden_states)
|
| 340 |
+
attn_outputs = self.attn(
|
| 341 |
+
hidden_states=hidden_states,
|
| 342 |
+
layer_past=layer_past,
|
| 343 |
+
attention_mask=attention_mask,
|
| 344 |
+
position_ids=position_ids,
|
| 345 |
+
head_mask=head_mask,
|
| 346 |
+
use_cache=use_cache,
|
| 347 |
+
output_attentions=output_attentions,
|
| 348 |
+
)
|
| 349 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 350 |
+
outputs = attn_outputs[1:]
|
| 351 |
+
|
| 352 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 353 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
| 354 |
+
|
| 355 |
+
if use_cache:
|
| 356 |
+
outputs = (hidden_states,) + outputs
|
| 357 |
+
else:
|
| 358 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 359 |
+
|
| 360 |
+
return outputs # hidden_states, present, (attentions)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
class GPTJPreTrainedModel(PreTrainedModel):
|
| 364 |
+
"""
|
| 365 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 366 |
+
models.
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
config_class = GPTJConfig
|
| 370 |
+
base_model_prefix = "transformer"
|
| 371 |
+
is_parallelizable = True
|
| 372 |
+
supports_gradient_checkpointing = True
|
| 373 |
+
_no_split_modules = ["GPTJBlock"]
|
| 374 |
+
_skip_keys_device_placement = "past_key_values"
|
| 375 |
+
|
| 376 |
+
def __init__(self, *inputs, **kwargs):
|
| 377 |
+
super().__init__(*inputs, **kwargs)
|
| 378 |
+
|
| 379 |
+
def _init_weights(self, module):
|
| 380 |
+
"""Initialize the weights."""
|
| 381 |
+
if isinstance(module, (nn.Linear,)):
|
| 382 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
| 383 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 384 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 385 |
+
if module.bias is not None:
|
| 386 |
+
module.bias.data.zero_()
|
| 387 |
+
elif isinstance(module, nn.Embedding):
|
| 388 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 389 |
+
if module.padding_idx is not None:
|
| 390 |
+
module.weight.data[module.padding_idx].zero_()
|
| 391 |
+
elif isinstance(module, nn.LayerNorm):
|
| 392 |
+
module.bias.data.zero_()
|
| 393 |
+
module.weight.data.fill_(1.0)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
GPTJ_START_DOCSTRING = r"""
|
| 397 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
| 398 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 399 |
+
behavior.
|
| 400 |
+
|
| 401 |
+
Parameters:
|
| 402 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
| 403 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 404 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 405 |
+
"""
|
| 406 |
+
|
| 407 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
| 408 |
+
Args:
|
| 409 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 410 |
+
Indices of input sequence tokens in the vocabulary.
|
| 411 |
+
|
| 412 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 413 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 414 |
+
|
| 415 |
+
[What are input IDs?](../glossary#input-ids)
|
| 416 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 417 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 418 |
+
|
| 419 |
+
- 1 for tokens that are **not masked**,
|
| 420 |
+
- 0 for tokens that are **masked**.
|
| 421 |
+
|
| 422 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 423 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 424 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 425 |
+
1]`:
|
| 426 |
+
|
| 427 |
+
- 0 corresponds to a *sentence A* token,
|
| 428 |
+
- 1 corresponds to a *sentence B* token.
|
| 429 |
+
|
| 430 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 431 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 432 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 433 |
+
config.n_positions - 1]`.
|
| 434 |
+
|
| 435 |
+
[What are position IDs?](../glossary#position-ids)
|
| 436 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
| 437 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 438 |
+
|
| 439 |
+
- 1 indicates the head is **not masked**,
|
| 440 |
+
- 0 indicates the head is **masked**.
|
| 441 |
+
|
| 442 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
| 443 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 444 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
| 445 |
+
model's internal embedding lookup matrix.
|
| 446 |
+
output_attentions (`bool`, *optional*):
|
| 447 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 448 |
+
tensors for more detail.
|
| 449 |
+
output_hidden_states (`bool`, *optional*):
|
| 450 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 451 |
+
more detail.
|
| 452 |
+
return_dict (`bool`, *optional*):
|
| 453 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 454 |
+
"""
|
| 455 |
+
|
| 456 |
+
PARALLELIZE_DOCSTRING = r"""
|
| 457 |
+
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
|
| 458 |
+
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
|
| 459 |
+
across all devices.
|
| 460 |
+
|
| 461 |
+
Args:
|
| 462 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
| 463 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
| 464 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
| 465 |
+
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
|
| 466 |
+
following number of attention modules:
|
| 467 |
+
|
| 468 |
+
- gpt-j-6B: 28
|
| 469 |
+
|
| 470 |
+
Example:
|
| 471 |
+
|
| 472 |
+
```python
|
| 473 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
|
| 474 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
| 475 |
+
device_map = {
|
| 476 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
| 477 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
| 478 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
| 479 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
| 480 |
+
}
|
| 481 |
+
model.parallelize(device_map)
|
| 482 |
+
```
|
| 483 |
+
"""
|
| 484 |
+
|
| 485 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
| 486 |
+
Moves the model to CPU from a model parallel state.
|
| 487 |
+
|
| 488 |
+
Example:
|
| 489 |
+
|
| 490 |
+
```python
|
| 491 |
+
# On a 4 GPU machine with gpt-j-6B:
|
| 492 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
| 493 |
+
device_map = {
|
| 494 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
| 495 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
| 496 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
| 497 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
| 498 |
+
}
|
| 499 |
+
model.parallelize(device_map) # Splits the model across several devices
|
| 500 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
| 501 |
+
```
|
| 502 |
+
"""
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
@add_start_docstrings(
|
| 506 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
| 507 |
+
GPTJ_START_DOCSTRING,
|
| 508 |
+
)
|
| 509 |
+
class GPTJModel(GPTJPreTrainedModel):
|
| 510 |
+
def __init__(self, config):
|
| 511 |
+
super().__init__(config)
|
| 512 |
+
|
| 513 |
+
self.embed_dim = config.n_embd
|
| 514 |
+
self.vocab_size = config.vocab_size
|
| 515 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 516 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 517 |
+
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
|
| 518 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 519 |
+
|
| 520 |
+
# Model parallel
|
| 521 |
+
self.model_parallel = False
|
| 522 |
+
self.device_map = None
|
| 523 |
+
self.gradient_checkpointing = False
|
| 524 |
+
|
| 525 |
+
# Initialize weights and apply final processing
|
| 526 |
+
self.post_init()
|
| 527 |
+
|
| 528 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 529 |
+
def parallelize(self, device_map=None):
|
| 530 |
+
warnings.warn(
|
| 531 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
| 532 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 533 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
| 534 |
+
" ...}",
|
| 535 |
+
FutureWarning,
|
| 536 |
+
)
|
| 537 |
+
# Check validity of device_map
|
| 538 |
+
self.device_map = (
|
| 539 |
+
get_device_map(len(self.h), range(torch.cuda.device_count()))
|
| 540 |
+
if device_map is None
|
| 541 |
+
else device_map
|
| 542 |
+
)
|
| 543 |
+
assert_device_map(self.device_map, len(self.h))
|
| 544 |
+
self.model_parallel = True
|
| 545 |
+
self.first_device = (
|
| 546 |
+
"cpu"
|
| 547 |
+
if "cpu" in self.device_map.keys()
|
| 548 |
+
else "cuda:" + str(min(self.device_map.keys()))
|
| 549 |
+
)
|
| 550 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 551 |
+
self.wte = self.wte.to(self.first_device)
|
| 552 |
+
# Load onto devices
|
| 553 |
+
for k, v in self.device_map.items():
|
| 554 |
+
for block in v:
|
| 555 |
+
cuda_device = "cuda:" + str(k)
|
| 556 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 557 |
+
# ln_f to last
|
| 558 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 559 |
+
|
| 560 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 561 |
+
def deparallelize(self):
|
| 562 |
+
warnings.warn(
|
| 563 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 564 |
+
FutureWarning,
|
| 565 |
+
)
|
| 566 |
+
self.model_parallel = False
|
| 567 |
+
self.device_map = None
|
| 568 |
+
self.first_device = "cpu"
|
| 569 |
+
self.last_device = "cpu"
|
| 570 |
+
self.wte = self.wte.to("cpu")
|
| 571 |
+
for index in range(len(self.h)):
|
| 572 |
+
self.h[index] = self.h[index].to("cpu")
|
| 573 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 574 |
+
torch.cuda.empty_cache()
|
| 575 |
+
|
| 576 |
+
def get_input_embeddings(self):
|
| 577 |
+
return self.wte
|
| 578 |
+
|
| 579 |
+
def set_input_embeddings(self, new_embeddings):
|
| 580 |
+
self.wte = new_embeddings
|
| 581 |
+
|
| 582 |
+
@add_start_docstrings_to_model_forward(
|
| 583 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 584 |
+
)
|
| 585 |
+
@add_code_sample_docstrings(
|
| 586 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 587 |
+
output_type=BaseModelOutputWithPast,
|
| 588 |
+
config_class=_CONFIG_FOR_DOC,
|
| 589 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
| 590 |
+
)
|
| 591 |
+
def forward(
|
| 592 |
+
self,
|
| 593 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 594 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 595 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 596 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 597 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 598 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 599 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 600 |
+
use_cache: Optional[bool] = None,
|
| 601 |
+
output_attentions: Optional[bool] = None,
|
| 602 |
+
output_hidden_states: Optional[bool] = None,
|
| 603 |
+
return_dict: Optional[bool] = None,
|
| 604 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 605 |
+
output_attentions = (
|
| 606 |
+
output_attentions
|
| 607 |
+
if output_attentions is not None
|
| 608 |
+
else self.config.output_attentions
|
| 609 |
+
)
|
| 610 |
+
output_hidden_states = (
|
| 611 |
+
output_hidden_states
|
| 612 |
+
if output_hidden_states is not None
|
| 613 |
+
else self.config.output_hidden_states
|
| 614 |
+
)
|
| 615 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 616 |
+
return_dict = (
|
| 617 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 621 |
+
raise ValueError(
|
| 622 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 623 |
+
)
|
| 624 |
+
elif input_ids is not None:
|
| 625 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 626 |
+
input_shape = input_ids.size()
|
| 627 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 628 |
+
batch_size = input_ids.shape[0]
|
| 629 |
+
elif inputs_embeds is not None:
|
| 630 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 631 |
+
batch_size = inputs_embeds.shape[0]
|
| 632 |
+
else:
|
| 633 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 634 |
+
|
| 635 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 636 |
+
|
| 637 |
+
if token_type_ids is not None:
|
| 638 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 639 |
+
|
| 640 |
+
if past_key_values is None:
|
| 641 |
+
past_length = 0
|
| 642 |
+
past_key_values = tuple([None] * len(self.h))
|
| 643 |
+
else:
|
| 644 |
+
past_length = past_key_values[0][0].size(-2)
|
| 645 |
+
|
| 646 |
+
if position_ids is None:
|
| 647 |
+
position_ids = torch.arange(
|
| 648 |
+
past_length,
|
| 649 |
+
input_shape[-1] + past_length,
|
| 650 |
+
dtype=torch.long,
|
| 651 |
+
device=device,
|
| 652 |
+
)
|
| 653 |
+
position_ids = position_ids.unsqueeze(0)
|
| 654 |
+
|
| 655 |
+
# Attention mask.
|
| 656 |
+
if attention_mask is not None:
|
| 657 |
+
if batch_size <= 0:
|
| 658 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 659 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 660 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 661 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 662 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 663 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 664 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 665 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 666 |
+
|
| 667 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 668 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 669 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 670 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 671 |
+
# effectively the same as removing these entirely.
|
| 672 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 673 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 674 |
+
|
| 675 |
+
# Prepare head mask if needed
|
| 676 |
+
# 1.0 in head_mask indicate we keep the head
|
| 677 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
| 678 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
| 679 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 680 |
+
|
| 681 |
+
if inputs_embeds is None:
|
| 682 |
+
inputs_embeds = self.wte(input_ids)
|
| 683 |
+
|
| 684 |
+
hidden_states = inputs_embeds
|
| 685 |
+
|
| 686 |
+
if token_type_ids is not None:
|
| 687 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 688 |
+
hidden_states = hidden_states + token_type_embeds
|
| 689 |
+
|
| 690 |
+
hidden_states = self.drop(hidden_states)
|
| 691 |
+
|
| 692 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 693 |
+
|
| 694 |
+
if self.gradient_checkpointing and self.training:
|
| 695 |
+
if use_cache:
|
| 696 |
+
logger.warning_once(
|
| 697 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 698 |
+
)
|
| 699 |
+
use_cache = False
|
| 700 |
+
|
| 701 |
+
presents = () if use_cache else None
|
| 702 |
+
all_self_attentions = () if output_attentions else None
|
| 703 |
+
all_hidden_states = () if output_hidden_states else None
|
| 704 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 705 |
+
# Model parallel
|
| 706 |
+
if self.model_parallel:
|
| 707 |
+
torch.cuda.set_device(hidden_states.device)
|
| 708 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 709 |
+
if layer_past is not None:
|
| 710 |
+
layer_past = tuple(
|
| 711 |
+
past_state.to(hidden_states.device) for past_state in layer_past
|
| 712 |
+
)
|
| 713 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 714 |
+
if attention_mask is not None:
|
| 715 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 716 |
+
if isinstance(head_mask, torch.Tensor):
|
| 717 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 718 |
+
if output_hidden_states:
|
| 719 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 720 |
+
|
| 721 |
+
if self.gradient_checkpointing and self.training:
|
| 722 |
+
outputs = self._gradient_checkpointing_func(
|
| 723 |
+
block.__call__,
|
| 724 |
+
hidden_states,
|
| 725 |
+
None,
|
| 726 |
+
attention_mask,
|
| 727 |
+
position_ids,
|
| 728 |
+
head_mask[i],
|
| 729 |
+
use_cache,
|
| 730 |
+
output_attentions,
|
| 731 |
+
)
|
| 732 |
+
else:
|
| 733 |
+
outputs = block(
|
| 734 |
+
hidden_states=hidden_states,
|
| 735 |
+
layer_past=layer_past,
|
| 736 |
+
attention_mask=attention_mask,
|
| 737 |
+
position_ids=position_ids,
|
| 738 |
+
head_mask=head_mask[i],
|
| 739 |
+
use_cache=use_cache,
|
| 740 |
+
output_attentions=output_attentions,
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
hidden_states = outputs[0]
|
| 744 |
+
if use_cache is True:
|
| 745 |
+
presents = presents + (outputs[1],)
|
| 746 |
+
|
| 747 |
+
if output_attentions:
|
| 748 |
+
all_self_attentions = all_self_attentions + (
|
| 749 |
+
outputs[2 if use_cache else 1],
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 753 |
+
if self.model_parallel:
|
| 754 |
+
for k, v in self.device_map.items():
|
| 755 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 756 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 757 |
+
|
| 758 |
+
hidden_states = self.ln_f(hidden_states)
|
| 759 |
+
|
| 760 |
+
hidden_states = hidden_states.view(output_shape)
|
| 761 |
+
# Add last hidden state
|
| 762 |
+
if output_hidden_states:
|
| 763 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 764 |
+
|
| 765 |
+
if not return_dict:
|
| 766 |
+
return tuple(
|
| 767 |
+
v
|
| 768 |
+
for v in [
|
| 769 |
+
hidden_states,
|
| 770 |
+
presents,
|
| 771 |
+
all_hidden_states,
|
| 772 |
+
all_self_attentions,
|
| 773 |
+
]
|
| 774 |
+
if v is not None
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
return BaseModelOutputWithPast(
|
| 778 |
+
last_hidden_state=hidden_states,
|
| 779 |
+
past_key_values=presents,
|
| 780 |
+
hidden_states=all_hidden_states,
|
| 781 |
+
attentions=all_self_attentions,
|
| 782 |
+
)
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
@add_start_docstrings(
|
| 786 |
+
"""
|
| 787 |
+
The GPT-J Model transformer with a language modeling head on top.
|
| 788 |
+
""",
|
| 789 |
+
GPTJ_START_DOCSTRING,
|
| 790 |
+
)
|
| 791 |
+
class GPTJForCausalLM(GPTJPreTrainedModel):
|
| 792 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 793 |
+
|
| 794 |
+
def __init__(self, config):
|
| 795 |
+
super().__init__(config)
|
| 796 |
+
self.transformer = GPTJModel(config)
|
| 797 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
| 798 |
+
|
| 799 |
+
# Model parallel
|
| 800 |
+
self.model_parallel = False
|
| 801 |
+
self.device_map = None
|
| 802 |
+
|
| 803 |
+
# Initialize weights and apply final processing
|
| 804 |
+
self.post_init()
|
| 805 |
+
|
| 806 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 807 |
+
def parallelize(self, device_map=None):
|
| 808 |
+
warnings.warn(
|
| 809 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
| 810 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 811 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
| 812 |
+
" 0, 'transformer.h.1': 1, ...}",
|
| 813 |
+
FutureWarning,
|
| 814 |
+
)
|
| 815 |
+
self.device_map = (
|
| 816 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 817 |
+
if device_map is None
|
| 818 |
+
else device_map
|
| 819 |
+
)
|
| 820 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 821 |
+
self.transformer.parallelize(self.device_map)
|
| 822 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 823 |
+
self.model_parallel = True
|
| 824 |
+
|
| 825 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 826 |
+
def deparallelize(self):
|
| 827 |
+
warnings.warn(
|
| 828 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 829 |
+
FutureWarning,
|
| 830 |
+
)
|
| 831 |
+
self.transformer.deparallelize()
|
| 832 |
+
self.transformer = self.transformer.to("cpu")
|
| 833 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 834 |
+
self.model_parallel = False
|
| 835 |
+
torch.cuda.empty_cache()
|
| 836 |
+
|
| 837 |
+
def get_output_embeddings(self):
|
| 838 |
+
return self.lm_head
|
| 839 |
+
|
| 840 |
+
def set_output_embeddings(self, new_embeddings):
|
| 841 |
+
self.lm_head = new_embeddings
|
| 842 |
+
|
| 843 |
+
def prepare_inputs_for_generation(
|
| 844 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
| 845 |
+
):
|
| 846 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 847 |
+
# Omit tokens covered by past_key_values
|
| 848 |
+
if past_key_values:
|
| 849 |
+
past_length = past_key_values[0][0].shape[2]
|
| 850 |
+
|
| 851 |
+
# Some generation methods already pass only the last input ID
|
| 852 |
+
if input_ids.shape[1] > past_length:
|
| 853 |
+
remove_prefix_length = past_length
|
| 854 |
+
else:
|
| 855 |
+
# Default to old behavior: keep only final ID
|
| 856 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 857 |
+
|
| 858 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 859 |
+
if token_type_ids is not None:
|
| 860 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
| 861 |
+
|
| 862 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 863 |
+
position_ids = kwargs.get("position_ids", None)
|
| 864 |
+
|
| 865 |
+
if attention_mask is not None and position_ids is None:
|
| 866 |
+
# create position_ids on the fly for batch generation
|
| 867 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 868 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 869 |
+
if past_key_values:
|
| 870 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 871 |
+
|
| 872 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 873 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 874 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 875 |
+
else:
|
| 876 |
+
model_inputs = {"input_ids": input_ids}
|
| 877 |
+
|
| 878 |
+
model_inputs.update(
|
| 879 |
+
{
|
| 880 |
+
"past_key_values": past_key_values,
|
| 881 |
+
"use_cache": kwargs.get("use_cache"),
|
| 882 |
+
"position_ids": position_ids,
|
| 883 |
+
"attention_mask": attention_mask,
|
| 884 |
+
"token_type_ids": token_type_ids,
|
| 885 |
+
}
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
return model_inputs
|
| 889 |
+
|
| 890 |
+
@add_start_docstrings_to_model_forward(
|
| 891 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 892 |
+
)
|
| 893 |
+
@add_code_sample_docstrings(
|
| 894 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 895 |
+
output_type=CausalLMOutputWithPast,
|
| 896 |
+
config_class=_CONFIG_FOR_DOC,
|
| 897 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
| 898 |
+
)
|
| 899 |
+
def forward(
|
| 900 |
+
self,
|
| 901 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 902 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 903 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 904 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 905 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 906 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 907 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 908 |
+
labels: Optional[torch.LongTensor] = None,
|
| 909 |
+
use_cache: Optional[bool] = None,
|
| 910 |
+
output_attentions: Optional[bool] = None,
|
| 911 |
+
output_hidden_states: Optional[bool] = None,
|
| 912 |
+
return_dict: Optional[bool] = None,
|
| 913 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 914 |
+
r"""
|
| 915 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 916 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 917 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 918 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 919 |
+
"""
|
| 920 |
+
return_dict = (
|
| 921 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 922 |
+
)
|
| 923 |
+
|
| 924 |
+
transformer_outputs = self.transformer(
|
| 925 |
+
input_ids,
|
| 926 |
+
past_key_values=past_key_values,
|
| 927 |
+
attention_mask=attention_mask,
|
| 928 |
+
token_type_ids=token_type_ids,
|
| 929 |
+
position_ids=position_ids,
|
| 930 |
+
head_mask=head_mask,
|
| 931 |
+
inputs_embeds=inputs_embeds,
|
| 932 |
+
use_cache=use_cache,
|
| 933 |
+
output_attentions=output_attentions,
|
| 934 |
+
output_hidden_states=output_hidden_states,
|
| 935 |
+
return_dict=return_dict,
|
| 936 |
+
)
|
| 937 |
+
hidden_states = transformer_outputs[0]
|
| 938 |
+
|
| 939 |
+
# Set device for model parallelism
|
| 940 |
+
if self.model_parallel:
|
| 941 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 942 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 943 |
+
|
| 944 |
+
# make sure sampling in fp16 works correctly and
|
| 945 |
+
# compute loss in fp32 to match with mesh-tf version
|
| 946 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
| 947 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
| 948 |
+
|
| 949 |
+
loss = None
|
| 950 |
+
if labels is not None:
|
| 951 |
+
# move labels to correct device to enable model parallelism
|
| 952 |
+
labels = labels.to(lm_logits.device)
|
| 953 |
+
# Shift so that tokens < n predict n
|
| 954 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 955 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 956 |
+
# Flatten the tokens
|
| 957 |
+
loss_fct = CrossEntropyLoss()
|
| 958 |
+
loss = loss_fct(
|
| 959 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
loss = loss.to(hidden_states.dtype)
|
| 963 |
+
|
| 964 |
+
if not return_dict:
|
| 965 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 966 |
+
return ((loss,) + output) if loss is not None else output
|
| 967 |
+
|
| 968 |
+
return CausalLMOutputWithPast(
|
| 969 |
+
loss=loss,
|
| 970 |
+
logits=lm_logits,
|
| 971 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 972 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 973 |
+
attentions=transformer_outputs.attentions,
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
@staticmethod
|
| 977 |
+
def _reorder_cache(
|
| 978 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 979 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 980 |
+
"""
|
| 981 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
| 982 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 983 |
+
beam_idx at every generation step.
|
| 984 |
+
"""
|
| 985 |
+
return tuple(
|
| 986 |
+
tuple(
|
| 987 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 988 |
+
for past_state in layer_past
|
| 989 |
+
)
|
| 990 |
+
for layer_past in past_key_values
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
|
| 994 |
+
@add_start_docstrings(
|
| 995 |
+
"""
|
| 996 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
| 997 |
+
|
| 998 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 999 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
| 1000 |
+
|
| 1001 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1002 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1003 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1004 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1005 |
+
each row of the batch).
|
| 1006 |
+
""",
|
| 1007 |
+
GPTJ_START_DOCSTRING,
|
| 1008 |
+
)
|
| 1009 |
+
class GPTJForSequenceClassification(GPTJPreTrainedModel):
|
| 1010 |
+
def __init__(self, config):
|
| 1011 |
+
super().__init__(config)
|
| 1012 |
+
self.num_labels = config.num_labels
|
| 1013 |
+
self.transformer = GPTJModel(config)
|
| 1014 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1015 |
+
|
| 1016 |
+
# Model parallel
|
| 1017 |
+
self.model_parallel = False
|
| 1018 |
+
self.device_map = None
|
| 1019 |
+
|
| 1020 |
+
# Initialize weights and apply final processing
|
| 1021 |
+
self.post_init()
|
| 1022 |
+
|
| 1023 |
+
@add_start_docstrings_to_model_forward(
|
| 1024 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 1025 |
+
)
|
| 1026 |
+
@add_code_sample_docstrings(
|
| 1027 |
+
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
|
| 1028 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 1029 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1030 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
| 1031 |
+
)
|
| 1032 |
+
def forward(
|
| 1033 |
+
self,
|
| 1034 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1035 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1036 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1037 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1038 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1039 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1040 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1041 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1042 |
+
use_cache: Optional[bool] = None,
|
| 1043 |
+
output_attentions: Optional[bool] = None,
|
| 1044 |
+
output_hidden_states: Optional[bool] = None,
|
| 1045 |
+
return_dict: Optional[bool] = None,
|
| 1046 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1047 |
+
r"""
|
| 1048 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1049 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1050 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1051 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1052 |
+
"""
|
| 1053 |
+
return_dict = (
|
| 1054 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
transformer_outputs = self.transformer(
|
| 1058 |
+
input_ids,
|
| 1059 |
+
past_key_values=past_key_values,
|
| 1060 |
+
attention_mask=attention_mask,
|
| 1061 |
+
token_type_ids=token_type_ids,
|
| 1062 |
+
position_ids=position_ids,
|
| 1063 |
+
head_mask=head_mask,
|
| 1064 |
+
inputs_embeds=inputs_embeds,
|
| 1065 |
+
use_cache=use_cache,
|
| 1066 |
+
output_attentions=output_attentions,
|
| 1067 |
+
output_hidden_states=output_hidden_states,
|
| 1068 |
+
return_dict=return_dict,
|
| 1069 |
+
)
|
| 1070 |
+
hidden_states = transformer_outputs[0]
|
| 1071 |
+
logits = self.score(hidden_states)
|
| 1072 |
+
|
| 1073 |
+
if input_ids is not None:
|
| 1074 |
+
batch_size = input_ids.shape[0]
|
| 1075 |
+
else:
|
| 1076 |
+
batch_size = inputs_embeds.shape[0]
|
| 1077 |
+
|
| 1078 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1079 |
+
raise ValueError(
|
| 1080 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1081 |
+
)
|
| 1082 |
+
if self.config.pad_token_id is None:
|
| 1083 |
+
sequence_lengths = -1
|
| 1084 |
+
else:
|
| 1085 |
+
if input_ids is not None:
|
| 1086 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1087 |
+
sequence_lengths = (
|
| 1088 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1089 |
+
)
|
| 1090 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1091 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1092 |
+
else:
|
| 1093 |
+
sequence_lengths = -1
|
| 1094 |
+
logger.warning(
|
| 1095 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1096 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1097 |
+
)
|
| 1098 |
+
|
| 1099 |
+
pooled_logits = logits[
|
| 1100 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1101 |
+
]
|
| 1102 |
+
|
| 1103 |
+
loss = None
|
| 1104 |
+
if labels is not None:
|
| 1105 |
+
labels = labels.to(pooled_logits.device)
|
| 1106 |
+
if self.config.problem_type is None:
|
| 1107 |
+
if self.num_labels == 1:
|
| 1108 |
+
self.config.problem_type = "regression"
|
| 1109 |
+
elif self.num_labels > 1 and (
|
| 1110 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1111 |
+
):
|
| 1112 |
+
self.config.problem_type = "single_label_classification"
|
| 1113 |
+
else:
|
| 1114 |
+
self.config.problem_type = "multi_label_classification"
|
| 1115 |
+
|
| 1116 |
+
if self.config.problem_type == "regression":
|
| 1117 |
+
loss_fct = MSELoss()
|
| 1118 |
+
if self.num_labels == 1:
|
| 1119 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1120 |
+
else:
|
| 1121 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1122 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1123 |
+
loss_fct = CrossEntropyLoss()
|
| 1124 |
+
loss = loss_fct(
|
| 1125 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1126 |
+
)
|
| 1127 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1128 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1129 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1130 |
+
if not return_dict:
|
| 1131 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1132 |
+
return ((loss,) + output) if loss is not None else output
|
| 1133 |
+
|
| 1134 |
+
return SequenceClassifierOutputWithPast(
|
| 1135 |
+
loss=loss,
|
| 1136 |
+
logits=pooled_logits,
|
| 1137 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1138 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1139 |
+
attentions=transformer_outputs.attentions,
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
@add_start_docstrings(
|
| 1144 |
+
"""
|
| 1145 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1146 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1147 |
+
""",
|
| 1148 |
+
GPTJ_START_DOCSTRING,
|
| 1149 |
+
)
|
| 1150 |
+
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
|
| 1151 |
+
def __init__(self, config):
|
| 1152 |
+
super().__init__(config)
|
| 1153 |
+
self.num_labels = config.num_labels
|
| 1154 |
+
self.transformer = GPTJModel(config)
|
| 1155 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1156 |
+
|
| 1157 |
+
# Model parallel
|
| 1158 |
+
self.model_parallel = False
|
| 1159 |
+
self.device_map = None
|
| 1160 |
+
|
| 1161 |
+
# Initialize weights and apply final processing
|
| 1162 |
+
self.post_init()
|
| 1163 |
+
|
| 1164 |
+
@add_start_docstrings_to_model_forward(
|
| 1165 |
+
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 1166 |
+
)
|
| 1167 |
+
@add_code_sample_docstrings(
|
| 1168 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1169 |
+
output_type=QuestionAnsweringModelOutput,
|
| 1170 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1171 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
| 1172 |
+
)
|
| 1173 |
+
def forward(
|
| 1174 |
+
self,
|
| 1175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1177 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1178 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1179 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1180 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1181 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1182 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1183 |
+
output_attentions: Optional[bool] = None,
|
| 1184 |
+
output_hidden_states: Optional[bool] = None,
|
| 1185 |
+
return_dict: Optional[bool] = None,
|
| 1186 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1187 |
+
r"""
|
| 1188 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1189 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1190 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1191 |
+
are not taken into account for computing the loss.
|
| 1192 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1193 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1194 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1195 |
+
are not taken into account for computing the loss.
|
| 1196 |
+
"""
|
| 1197 |
+
return_dict = (
|
| 1198 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
outputs = self.transformer(
|
| 1202 |
+
input_ids,
|
| 1203 |
+
attention_mask=attention_mask,
|
| 1204 |
+
token_type_ids=token_type_ids,
|
| 1205 |
+
position_ids=position_ids,
|
| 1206 |
+
head_mask=head_mask,
|
| 1207 |
+
inputs_embeds=inputs_embeds,
|
| 1208 |
+
output_attentions=output_attentions,
|
| 1209 |
+
output_hidden_states=output_hidden_states,
|
| 1210 |
+
return_dict=return_dict,
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
sequence_output = outputs[0]
|
| 1214 |
+
|
| 1215 |
+
logits = self.qa_outputs(sequence_output)
|
| 1216 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1217 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1218 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1219 |
+
|
| 1220 |
+
total_loss = None
|
| 1221 |
+
if start_positions is not None and end_positions is not None:
|
| 1222 |
+
# If we are on multi-GPU, split add a dimension
|
| 1223 |
+
if len(start_positions.size()) > 1:
|
| 1224 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1225 |
+
if len(end_positions.size()) > 1:
|
| 1226 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1227 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1228 |
+
ignored_index = start_logits.size(1)
|
| 1229 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1230 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1231 |
+
|
| 1232 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1233 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1234 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1235 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1236 |
+
|
| 1237 |
+
if not return_dict:
|
| 1238 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1239 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1240 |
+
|
| 1241 |
+
return QuestionAnsweringModelOutput(
|
| 1242 |
+
loss=total_loss,
|
| 1243 |
+
start_logits=start_logits,
|
| 1244 |
+
end_logits=end_logits,
|
| 1245 |
+
hidden_states=outputs.hidden_states,
|
| 1246 |
+
attentions=outputs.attentions,
|
| 1247 |
+
)
|