cxdu commited on
Commit
2bcfae0
·
1 Parent(s): b260ba6

Manually merge local checkpoint

Browse files
README.md CHANGED
@@ -1,3 +1,60 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - RUC-AIBOX/long_form_thought_data_5k
5
+ base_model:
6
+ - Qwen/Qwen2.5-32B-Instruct
7
+ ---
8
+ # Model Card for Model ID
9
+
10
+ ## Model Details:
11
+
12
+ - **Base Model:** Qwen/Qwen2.5-32B-Instruct
13
+ - **datasets:** RUC-AIBOX/long_form_thought_data_5k
14
+ - **Training Framework:** Supervised Fine-tuning
15
+ - **Parameters:** 32B
16
+ - **Special Features:**
17
+ - Replace 50% full attention layers with streaming attention
18
+
19
+ ---
20
+
21
+ ## Model Details
22
+
23
+ **QwQ-LightTransfer** is a 32B-parameter model built on **Qwen/Qwen2.5-32B-Instruct** and fine-tuned via SFT on **RUC-AIBOX/long_form_thought_data_5k**. By replacing 50% of the model’s full attention layers with streaming attention,specifically layers [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 37, 38, 43, 51], it substantially reduces memory costs. QwQ-LightTransfer scores 53.3% on the advanced math benchmark AIME24, demonstrating its strong o1-like long reasoning capabilities.
24
+
25
+ ```
26
+ import torch
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM
28
+
29
+ model_name = 'QwQ-32B-LightTransfer'
30
+
31
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
32
+ model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16,trust_remote_code=True,device_map='auto')
33
+
34
+ text = "Hi, I'm QwQ-32B-LightTransfer,"
35
+
36
+ inputs = tokenizer(text, return_tensors='pt').to(model.device)
37
+
38
+
39
+ with torch.no_grad():
40
+ outputs = model.generate(inputs['input_ids'],max_gen_len=256)
41
+
42
+ print(tokenizer.decode(outputs[0]))
43
+ ```
44
+
45
+
46
+ ## Citation
47
+
48
+
49
+ ```
50
+ @misc{zhang2025lighttransferlongcontextllmsecretly,
51
+ title={LightTransfer: Your Long-Context LLM is Secretly a Hybrid Model with Effortless Adaptation},
52
+ author={Xuan Zhang and Fengzhuo Zhang and Cunxiao Du and Chao Du and Tianyu Pang and Wei Gao and Min Lin},
53
+ year={2025},
54
+ eprint={2410.13846},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.CL},
57
+ url={https://arxiv.org/abs/2410.13846},
58
+ }
59
+ ```
60
+
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2LitTransForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwenLitTrans.Qwen2LitTransConfig",
7
+ "AutoModelForCausalLM": "modeling_qwenLitTrans.Qwen2LitTransForCausalLM"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151645,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 27648,
16
+ "max_position_embeddings": 32768,
17
+ "max_window_layers": 70,
18
+ "model_type": "qwen2littrans",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 64,
21
+ "num_key_value_heads": 8,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": null,
24
+ "rope_theta": 1000000.0,
25
+ "sliding_window": null,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.45.2",
29
+ "use_cache": false,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 152064
32
+ }
configuration_qwenLitTrans.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 LightTransfer team and the HuggingFace Inc. team. All rights reserved.
3
+ # This code is based on src/transformers/models/qwen2/configuration_qwen2.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """Qwen2LitTrans model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.modeling_rope_utils import rope_config_validation
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class Qwen2LitTransConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`Qwen2LitTransModel`]. It is used to instantiate a
29
+ Qwen2LitTrans model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
+ with the defaults will yield a similar configuration to that of
31
+ Qwen2LitTrans-7B-beta [Qwen/Qwen2LitTrans-7B-beta](https://huggingface.co/Qwen/Qwen2LitTrans-7B-beta).
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 151936):
39
+ Vocabulary size of the Qwen2LitTrans model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`Qwen2LitTransModel`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 22016):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*, defaults to 32):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
59
+ The maximum sequence length that this model might ever be used with.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
68
+ Whether the model's input and output word embeddings should be tied.
69
+ rope_theta (`float`, *optional*, defaults to 10000.0):
70
+ The base period of the RoPE embeddings.
71
+ rope_scaling (`Dict`, *optional*):
72
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
73
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
74
+ accordingly.
75
+ Expected contents:
76
+ `rope_type` (`str`):
77
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
78
+ 'llama3'], with 'default' being the original RoPE implementation.
79
+ `factor` (`float`, *optional*):
80
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
81
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
82
+ original maximum pre-trained length.
83
+ `original_max_position_embeddings` (`int`, *optional*):
84
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
85
+ pretraining.
86
+ `attention_factor` (`float`, *optional*):
87
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
88
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
89
+ `factor` field to infer the suggested value.
90
+ `beta_fast` (`float`, *optional*):
91
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
92
+ ramp function. If unspecified, it defaults to 32.
93
+ `beta_slow` (`float`, *optional*):
94
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
95
+ ramp function. If unspecified, it defaults to 1.
96
+ `short_factor` (`List[float]`, *optional*):
97
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
98
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
99
+ size divided by the number of attention heads divided by 2
100
+ `long_factor` (`List[float]`, *optional*):
101
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
102
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
103
+ size divided by the number of attention heads divided by 2
104
+ `low_freq_factor` (`float`, *optional*):
105
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
106
+ `high_freq_factor` (`float`, *optional*):
107
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
108
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
109
+ Whether to use sliding window attention.
110
+ sliding_window (`int`, *optional*, defaults to 4096):
111
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
112
+ max_window_layers (`int`, *optional*, defaults to 28):
113
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
114
+ attention_dropout (`float`, *optional*, defaults to 0.0):
115
+ The dropout ratio for the attention probabilities.
116
+
117
+ ```python
118
+ >>> from transformers import Qwen2Model, Qwen2Config
119
+
120
+ >>> # Initializing a Qwen2 style configuration
121
+ >>> configuration = Qwen2Config()
122
+
123
+ >>> # Initializing a model from the Qwen2-7B style configuration
124
+ >>> model = Qwen2Model(configuration)
125
+
126
+ >>> # Accessing the model configuration
127
+ >>> configuration = model.config
128
+ ```"""
129
+
130
+ model_type = "qwen2littrans"
131
+ keys_to_ignore_at_inference = ["past_key_values"]
132
+
133
+ # Default tensor parallel plan for base model `Qwen2LitTrans`
134
+ base_model_tp_plan = {
135
+ "layers.*.self_attn.q_proj": "colwise",
136
+ "layers.*.self_attn.k_proj": "colwise",
137
+ "layers.*.self_attn.v_proj": "colwise",
138
+ "layers.*.self_attn.o_proj": "rowwise",
139
+ "layers.*.mlp.gate_proj": "colwise",
140
+ "layers.*.mlp.up_proj": "colwise",
141
+ "layers.*.mlp.down_proj": "rowwise",
142
+ }
143
+ base_model_pp_plan = {
144
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
145
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
146
+ "norm": (["hidden_states"], ["hidden_states"]),
147
+ }
148
+
149
+ def __init__(
150
+ self,
151
+ vocab_size=151936,
152
+ hidden_size=4096,
153
+ intermediate_size=22016,
154
+ num_hidden_layers=32,
155
+ num_attention_heads=32,
156
+ num_key_value_heads=32,
157
+ hidden_act="silu",
158
+ max_position_embeddings=32768,
159
+ initializer_range=0.02,
160
+ rms_norm_eps=1e-6,
161
+ use_cache=True,
162
+ tie_word_embeddings=False,
163
+ rope_theta=10000.0,
164
+ rope_scaling=None,
165
+ use_sliding_window=False,
166
+ sliding_window=4096,
167
+ max_window_layers=28,
168
+ attention_dropout=0.0,
169
+ **kwargs,
170
+ ):
171
+ self.vocab_size = vocab_size
172
+ self.max_position_embeddings = max_position_embeddings
173
+ self.hidden_size = hidden_size
174
+ self.intermediate_size = intermediate_size
175
+ self.num_hidden_layers = num_hidden_layers
176
+ self.num_attention_heads = num_attention_heads
177
+ self.use_sliding_window = use_sliding_window
178
+ self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
179
+ self.max_window_layers = max_window_layers
180
+
181
+ # for backward compatibility
182
+ if num_key_value_heads is None:
183
+ num_key_value_heads = num_attention_heads
184
+
185
+ self.num_key_value_heads = num_key_value_heads
186
+ self.hidden_act = hidden_act
187
+ self.initializer_range = initializer_range
188
+ self.rms_norm_eps = rms_norm_eps
189
+ self.use_cache = use_cache
190
+ self.rope_theta = rope_theta
191
+ self.rope_scaling = rope_scaling
192
+ self.attention_dropout = attention_dropout
193
+ # Validate the correctness of rotary position embeddings parameters
194
+ # BC: if there is a 'type' field, move it to 'rope_type'.
195
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
196
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
197
+ rope_config_validation(self)
198
+
199
+ super().__init__(
200
+ tie_word_embeddings=tie_word_embeddings,
201
+ **kwargs,
202
+ )
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.45.2"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a55f70120e5f2ae424db49a5068a8d533aff4f7c8a8e56fd5a4d7c3f8d538a8c
3
+ size 4891730992
model-00002-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc7d05702d9a5ddaae74360bc38d2e722d63103969acdb5ea2ded785f19abc2
3
+ size 4876059352
model-00003-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837209ae6a1cf317a127bc3e1ceb6e041bd5812bc075773862f93b4a1e08ef7f
3
+ size 4876059384
model-00004-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c7643267373290cf2818a2e3ea2f1fafc7b45608db8c6abaabac417f7c7e77
3
+ size 4876059416
model-00005-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:928be54572476ae801847fb4d983cb0385144d9ce5b98b8d86fe39c58c797a76
3
+ size 4876059416
model-00006-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33c92c21b78a6dfe56b4c309279d2c8d46f4f6363cc6a566c0fe4cb97c4100d4
3
+ size 4876059416
model-00007-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19497bcc7246a1698c903dc637744aba1345f7a74929945dac05291e0d935ea1
3
+ size 4876059416
model-00008-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef622473c5d2d8b155437b0c9cb586fdf9de6daaf8f96d1a148b79cd8fb87f22
3
+ size 4876059416
model-00009-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:247a33c0c59972498c0053e8177d93d14cbf97be0eb682843bf7e3790292e6bc
3
+ size 4876059416
model-00010-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd3642e24b7ac7f797bacdc369f980200b5d0cf6db497cba040cbf4a9715800
3
+ size 4876059416
model-00011-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a84d4a356350b9b86b37269670dcdb53695e3d43c8f5e93046737b656031475c
3
+ size 4876059416
model-00012-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:333d0372227f98f4e46f901468a0550aa5bb1c53ac72dcb5c0fe99920ecc7c16
3
+ size 4876059416
model-00013-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0321d816003337a19bd5f6456dcc2cce5be1a7de3ec1b1fd1c22e197b583519
3
+ size 4876059416
model-00014-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f92589fcc3d373e54523e4a708b78576c9f933acf4c7c8b3e826ba3af1f3b5ce
3
+ size 2123397800
model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 65527752704
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
776
+ "model.norm.weight": "model-00014-of-00014.safetensors"
777
+ }
778
+ }
modeling_qwenLitTrans.py ADDED
@@ -0,0 +1,798 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ #
3
+ # Copyright 2025 LightTransfer team and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on transformers/src/transformers/models/qwen2/modeling_qwen2.py
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ """PyTorch Qwen2LitTrans model."""
19
+
20
+ import matplotlib.pyplot as plt
21
+ import os
22
+
23
+ import math
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ torch.set_printoptions(precision=2)
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from functools import partial
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
36
+ from transformers.generation import GenerationMixin
37
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ TokenClassifierOutput,
43
+ )
44
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.utils import (
47
+ add_start_docstrings,
48
+ add_start_docstrings_to_model_forward,
49
+ is_flash_attn_2_available,
50
+ is_flash_attn_greater_or_equal_2_10,
51
+ is_torchdynamo_compiling,
52
+ logging,
53
+ replace_return_docstrings,
54
+ )
55
+ from .configuration_qwenLitTrans import Qwen2LitTransConfig
56
+ from flash_attn import flash_attn_func, flash_attn_with_kvcache
57
+
58
+ if is_flash_attn_2_available():
59
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
60
+
61
+ # from torch.nn.attention.flex_attention import flex_attention
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+
66
+ _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
67
+ _CONFIG_FOR_DOC = "Qwen2LitTransConfig"
68
+
69
+ def torch_tree_attention(q, k_cache, v_cache, k, v, kv_seqlen=None, tree_mask=None):
70
+ bsz, num_kv_heads, kv_len, head_dim = k.size()
71
+ kv_groups = q.size(1) // num_kv_heads
72
+
73
+ insert_indices = kv_seqlen.unsqueeze(-1) + torch.arange(kv_len, device=kv_seqlen.device).unsqueeze(0)
74
+ insert_indices = insert_indices[:, None, :, None].expand(-1, num_kv_heads, -1, head_dim)
75
+
76
+ k_cache.scatter_(2, insert_indices, k)
77
+ v_cache.scatter_(2, insert_indices, v)
78
+
79
+ # NOTE must after the scater!
80
+ cur_kv_seqlen = kv_seqlen + k.size(2)
81
+
82
+ max_len = cur_kv_seqlen.max().item() #, k_cache.size(2))
83
+
84
+ k, v = k_cache[:, :, :max_len], v_cache[:, :, :max_len]
85
+ seqlen_mask = torch.arange(max_len, device=k.device) >= cur_kv_seqlen.unsqueeze(-1) # [B, S]
86
+ seqlen_mask = seqlen_mask.unsqueeze(1)
87
+
88
+
89
+ if kv_groups > 1:
90
+ k = k.unsqueeze(2).expand(-1, -1, kv_groups, -1, -1).reshape(bsz, num_kv_heads * kv_groups, max_len, head_dim)
91
+ v = v.unsqueeze(2).expand(-1, -1, kv_groups, -1, -1).reshape(bsz, num_kv_heads * kv_groups, max_len, head_dim)
92
+
93
+
94
+ out = torch.nn.functional.scaled_dot_product_attention(
95
+ q,
96
+ k[:, :, :max_len],
97
+ v[:, :, :max_len],
98
+ attn_mask=None,
99
+ dropout_p=0.0,
100
+ is_causal=True,
101
+ )
102
+
103
+ return out.transpose(1, 2)
104
+
105
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2LitTrans
106
+ class Qwen2LitTransRMSNorm(nn.Module):
107
+ def __init__(self, hidden_size, eps=1e-6):
108
+ """
109
+ Qwen2LitTransRMSNorm is equivalent to T5LayerNorm
110
+ """
111
+ super().__init__()
112
+ self.weight = nn.Parameter(torch.ones(hidden_size))
113
+ self.variance_epsilon = eps
114
+
115
+ def forward(self, hidden_states):
116
+ input_dtype = hidden_states.dtype
117
+ hidden_states = hidden_states.to(torch.float32)
118
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
119
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
120
+ return self.weight * hidden_states.to(input_dtype)
121
+
122
+ def extra_repr(self):
123
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
124
+
125
+
126
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2LitTrans
127
+ class Qwen2LitTransRotaryEmbedding(nn.Module):
128
+ def __init__(
129
+ self,
130
+ dim=None,
131
+ max_position_embeddings=2048,
132
+ base=10000,
133
+ device=None,
134
+ scaling_factor=1.0,
135
+ rope_type="default",
136
+ config: Optional[Qwen2LitTransConfig] = None,
137
+ ):
138
+ super().__init__()
139
+ # TODO (joao): remove the `if` below, only used for BC
140
+ self.rope_kwargs = {}
141
+ if config is None:
142
+ logger.warning_once(
143
+ "`Qwen2LitTransRotaryEmbedding` can now be fully parameterized by passing the model config through the "
144
+ "`config` argument. All other arguments will be removed in v4.46"
145
+ )
146
+ self.rope_kwargs = {
147
+ "rope_type": rope_type,
148
+ "factor": scaling_factor,
149
+ "dim": dim,
150
+ "base": base,
151
+ "max_position_embeddings": max_position_embeddings,
152
+ }
153
+ self.rope_type = rope_type
154
+ self.max_seq_len_cached = max_position_embeddings
155
+ self.original_max_seq_len = max_position_embeddings
156
+ else:
157
+ # BC: "rope_type" was originally "type"
158
+ # if config.rope_scaling is not None:
159
+ # self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
160
+ # else:
161
+ self.rope_type = "default"
162
+ self.max_seq_len_cached = config.max_position_embeddings
163
+ self.original_max_seq_len = config.max_position_embeddings
164
+
165
+ self.config = config
166
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
167
+
168
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
169
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
170
+ self.original_inv_freq = self.inv_freq
171
+
172
+ def _dynamic_frequency_update(self, position_ids, device):
173
+ """
174
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
175
+ 1 - growing beyond the cached sequence length (allow scaling)
176
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
177
+ """
178
+ seq_len = torch.max(position_ids) + 1
179
+ if seq_len > self.max_seq_len_cached: # growth
180
+ inv_freq, self.attention_scaling = self.rope_init_fn(
181
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
182
+ )
183
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
184
+ self.max_seq_len_cached = seq_len
185
+
186
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
187
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
188
+ self.max_seq_len_cached = self.original_max_seq_len
189
+
190
+ @torch.no_grad()
191
+ def forward(self, x, position_ids):
192
+ if "dynamic" in self.rope_type:
193
+ self._dynamic_frequency_update(position_ids, device=x.device)
194
+
195
+ # Core RoPE block
196
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
197
+ position_ids_expanded = position_ids[:, None, :].float()
198
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
199
+ device_type = x.device.type
200
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
201
+ with torch.autocast(device_type=device_type, enabled=False):
202
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ cos = emb.cos()
205
+ sin = emb.sin()
206
+
207
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
208
+ cos = cos * self.attention_scaling
209
+ sin = sin * self.attention_scaling
210
+
211
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
212
+
213
+
214
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
215
+ def rotate_half(x):
216
+ """Rotates half the hidden dims of the input."""
217
+ x1 = x[..., : x.shape[-1] // 2]
218
+ x2 = x[..., x.shape[-1] // 2 :]
219
+ return torch.cat((-x2, x1), dim=-1)
220
+
221
+
222
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
223
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
224
+ """Applies Rotary Position Embedding to the query and key tensors.
225
+
226
+ Args:
227
+ q (`torch.Tensor`): The query tensor.
228
+ k (`torch.Tensor`): The key tensor.
229
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
230
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
231
+ position_ids (`torch.Tensor`, *optional*):
232
+ Deprecated and unused.
233
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
234
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
235
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
236
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
237
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
238
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
239
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
240
+ Returns:
241
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
242
+ """
243
+ cos = cos.unsqueeze(unsqueeze_dim)
244
+ sin = sin.unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2LitTrans
251
+ class Qwen2LitTransMLP(nn.Module):
252
+ def __init__(self, config):
253
+ super().__init__()
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, hidden_state):
262
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
263
+
264
+
265
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
266
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
267
+ """
268
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
269
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
270
+ """
271
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
272
+ if n_rep == 1:
273
+ return hidden_states
274
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
275
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
276
+
277
+
278
+ class Qwen2LitTransAttention(nn.Module):
279
+ """
280
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
281
+ and "Generating Long Sequences with Sparse Transformers".
282
+ """
283
+
284
+ def __init__(self, config: Qwen2LitTransConfig, layer_idx: Optional[int] = None):
285
+ super().__init__()
286
+ self.config = config
287
+ self.layer_idx = layer_idx
288
+ if layer_idx is None:
289
+ logger.warning_once(
290
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
291
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
292
+ "when creating this class."
293
+ )
294
+
295
+ self.hidden_size = config.hidden_size
296
+ self.num_heads = config.num_attention_heads
297
+ self.head_dim = self.hidden_size // self.num_heads
298
+ self.num_key_value_heads = config.num_key_value_heads
299
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
300
+ self.max_position_embeddings = config.max_position_embeddings
301
+ self.rope_theta = config.rope_theta
302
+ self.is_causal = True
303
+ self.attention_dropout = config.attention_dropout
304
+
305
+ if (self.head_dim * self.num_heads) != self.hidden_size:
306
+ raise ValueError(
307
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
308
+ f" and `num_heads`: {self.num_heads})."
309
+ )
310
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
311
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
312
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
313
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
314
+
315
+ self.rotary_emb = Qwen2LitTransRotaryEmbedding(config=self.config)
316
+ self.K_Cache = None
317
+ self.V_Cache = None
318
+ self.answer_K_Cache = None
319
+ self.answer_V_Cache = None
320
+ self.max_len = 2048
321
+ self.log_ratio = math.log(0.7)
322
+ self.prefix_lens = None
323
+ self.layer_idx = layer_idx
324
+ self.last_layer = (config.num_hidden_layers == self.layer_idx + 1)
325
+ self.softmax_scale = 1 / (128 ** 0.5)
326
+ self.range_indices = None
327
+ self.sink_len = 128
328
+ self.kv_len = 2048
329
+ self.lazy_ratio = None
330
+ self.lazy_cnt = 0
331
+ self.key_importance = None
332
+ self.fa_cache_lens = None
333
+ self.print_flag = True
334
+ self.lazy_list = [38, 51, 35, 26, 23, 43, 37, 24, 21, 28, 30, 22, 32, 33, 13, 20, 31, 27, 18, 9, 15, 19, 16, 17, 12, 8, 6, 10, 7, 5, 11, 14]
335
+ # self.lazy_list =[31, 27, 18, 9, 15, 19, 16, 17, 12, 8, 6, 10, 7, 5, 11, 14]
336
+ # self.lazy_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
337
+ # self.lazy_list = [-1]
338
+ def forward(
339
+ self,
340
+ hidden_states,
341
+ position_embeddings,
342
+ cache_lens=None,
343
+ flex_attn=None,
344
+ tree_mask=None,
345
+ exec_type="training",
346
+ vis_lens=None,
347
+ sample_id=None,
348
+ ):
349
+
350
+ kv_cache = None
351
+ torch.cuda.empty_cache()
352
+ if exec_type == "prefill":
353
+ # print(self.layer_idx)
354
+ y = self.prefill(hidden_states, position_embeddings)
355
+ torch.cuda.empty_cache()
356
+ elif exec_type == "decoding":
357
+ # print(self.layer_idx)
358
+ if self.layer_idx in self.lazy_list:
359
+ y = self.streaming_decoding(hidden_states, position_embeddings, cache_lens)
360
+ else:
361
+ y = self.decoding(hidden_states, position_embeddings, cache_lens)
362
+ else:
363
+ raise ValueError(f"Unknown inference_type: {exec_type}")
364
+ return y, kv_cache
365
+
366
+ def prefill(
367
+ self,
368
+ hidden_states,
369
+ position_embeddings,
370
+ ):
371
+
372
+ bsz, q_len, _ = hidden_states.size()
373
+ query_states = self.q_proj(hidden_states)
374
+ key_states = self.k_proj(hidden_states)
375
+ value_states = self.v_proj(hidden_states)
376
+
377
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
378
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
379
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
380
+
381
+ cos, sin = position_embeddings
382
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
383
+
384
+
385
+ # print(attn_output.shape)
386
+ if self.layer_idx in self.lazy_list:
387
+ self.K_Cache = query_states.new_zeros((bsz, 1024+128, self.num_key_value_heads, self.head_dim))
388
+ self.V_Cache = query_states.new_zeros((bsz, 1024+128, self.num_key_value_heads, self.head_dim))
389
+ else:
390
+ self.K_Cache = query_states.new_zeros((bsz, 32000, self.num_key_value_heads, self.head_dim))
391
+ self.V_Cache = query_states.new_zeros((bsz, 32000, self.num_key_value_heads, self.head_dim))
392
+ # print(self.K_Cache.size())
393
+ # print(self.K_Cache)
394
+
395
+ self.K_Cache[:, :q_len] = key_states
396
+ self.V_Cache[:, :q_len] = value_states
397
+ attn_output = flash_attn_func(query_states, key_states, value_states, causal=True)
398
+ self.range_indices = torch.arange(8192, device=self.K_Cache.device)
399
+ attn_output = self.o_proj(attn_output.view(bsz, q_len, -1))
400
+ self.lazy_cnt = 0
401
+ self.lazy_ratio = None
402
+
403
+ return attn_output
404
+ def decoding(
405
+ self,
406
+ hidden_states,
407
+ position_embeddings,
408
+ cache_lens,
409
+ ):
410
+
411
+ bsz, q_len, _ = hidden_states.size()
412
+ query_states = self.q_proj(hidden_states)
413
+ key_states = self.k_proj(hidden_states)
414
+ value_states = self.v_proj(hidden_states)
415
+
416
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
417
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
418
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
419
+
420
+ cos, sin = position_embeddings
421
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
422
+
423
+ attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, key_states, value_states, causal=True, cache_seqlens=cache_lens)
424
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
425
+ attn_output = self.o_proj(attn_output)
426
+
427
+ return attn_output
428
+ def streaming_decoding(
429
+ self,
430
+ hidden_states,
431
+ position_embeddings,
432
+ cache_lens,
433
+ ):
434
+ # if self.print_flag:
435
+ # print(True)
436
+ # print(self.layer_idx)
437
+ # self.print_flag = False
438
+ bsz, q_len, _ = hidden_states.size()
439
+
440
+ query_states = self.q_proj(hidden_states)
441
+ key_states = self.k_proj(hidden_states)
442
+ value_states = self.v_proj(hidden_states)
443
+
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
447
+
448
+ cos, sin = position_embeddings
449
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
450
+ if cache_lens < self.K_Cache.size(1):
451
+ attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, key_states, value_states, causal=True, cache_seqlens=cache_lens)
452
+ else:
453
+ remap_cache_len = (cache_lens % (self.K_Cache.size(1) - self.sink_len)) + self.sink_len - 1
454
+ self.K_Cache[self.range_indices[:bsz], remap_cache_len] = key_states
455
+ self.V_Cache[self.range_indices[:bsz], remap_cache_len] = value_states
456
+ attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, causal=True, cache_seqlens=self.K_Cache.size(1))
457
+ # print(self.K_Cache.size(1))
458
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
459
+ attn_output = self.o_proj(attn_output)
460
+
461
+ return attn_output
462
+
463
+ Qwen2LitTrans_ATTENTION_CLASSES = {
464
+ "eager": Qwen2LitTransAttention,
465
+ "flash_attention_2": Qwen2LitTransAttention,
466
+ "sdpa": Qwen2LitTransAttention,
467
+ }
468
+
469
+
470
+ class Qwen2LitTransDecoderLayer(nn.Module):
471
+ def __init__(self, config: Qwen2LitTransConfig, layer_idx: int):
472
+ super().__init__()
473
+ self.hidden_size = config.hidden_size
474
+ self.layer_idx = layer_idx
475
+ self.last_layer = (config.num_hidden_layers == self.layer_idx + 1)
476
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
477
+ logger.warning_once(
478
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
479
+ "unexpected results may be encountered."
480
+ )
481
+ self.self_attn = Qwen2LitTrans_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
482
+
483
+ self.mlp = Qwen2LitTransMLP(config)
484
+ self.input_layernorm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
485
+ self.post_attention_layernorm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
486
+
487
+ def forward(
488
+ self,
489
+ hidden_states,
490
+ position_embeddings, # will become mandatory in v4.46
491
+ cache_lens=None,
492
+ flex_attn=None,
493
+ exec_type=None,
494
+ tree_mask=None,
495
+ vis_lens=None,
496
+ sample_id=None,
497
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
498
+
499
+
500
+ residual = hidden_states
501
+
502
+ hidden_states = self.input_layernorm(hidden_states)
503
+
504
+ # Self Attention
505
+ hidden_states, kv_cache = self.self_attn(
506
+ hidden_states=hidden_states,
507
+ position_embeddings=position_embeddings,
508
+ cache_lens=cache_lens,
509
+ flex_attn=flex_attn,
510
+ exec_type=exec_type,
511
+ tree_mask=tree_mask,
512
+ vis_lens=vis_lens,
513
+ sample_id=sample_id,
514
+ )
515
+ hidden_states = residual + hidden_states
516
+
517
+ # Fully Connected
518
+ residual = hidden_states
519
+ hidden_states = self.post_attention_layernorm(hidden_states)
520
+ hidden_states = self.mlp(hidden_states)
521
+ hidden_states = residual + hidden_states
522
+
523
+ outputs = (hidden_states, kv_cache)
524
+
525
+ return outputs
526
+
527
+ class Qwen2LitTransPreTrainedModel(PreTrainedModel):
528
+ config_class = Qwen2LitTransConfig
529
+ base_model_prefix = "model"
530
+ supports_gradient_checkpointing = True
531
+ _no_split_modules = ["Qwen2LitTransDecoderLayer"]
532
+ _skip_keys_device_placement = "past_key_values"
533
+ _supports_flash_attn_2 = True
534
+ _supports_sdpa = True
535
+ _supports_cache_class = True
536
+ _supports_quantized_cache = True
537
+ _supports_static_cache = True
538
+
539
+ def _init_weights(self, module):
540
+ std = self.config.initializer_range
541
+ if isinstance(module, nn.Linear):
542
+ module.weight.data.normal_(mean=0.0, std=std)
543
+ if module.bias is not None:
544
+ module.bias.data.zero_()
545
+ elif isinstance(module, nn.Embedding):
546
+ module.weight.data.normal_(mean=0.0, std=std)
547
+ if module.padding_idx is not None:
548
+ module.weight.data[module.padding_idx].zero_()
549
+
550
+ class Qwen2LitTransModel(Qwen2LitTransPreTrainedModel):
551
+ """
552
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2LitTransDecoderLayer`]
553
+
554
+ Args:
555
+ config: Qwen2LitTransConfig
556
+ """
557
+
558
+ def __init__(self, config: Qwen2LitTransConfig):
559
+ super().__init__(config)
560
+ self.padding_idx = config.pad_token_id
561
+ self.vocab_size = config.vocab_size
562
+
563
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
564
+ self.layers = nn.ModuleList(
565
+ [Qwen2LitTransDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
566
+ )
567
+ self._attn_implementation = config._attn_implementation
568
+ self.norm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
569
+ self.rotary_emb = Qwen2LitTransRotaryEmbedding(config=config)
570
+
571
+ self.gradient_checkpointing = False
572
+ # Initialize weights and apply final processing
573
+ self.post_init()
574
+
575
+ def get_input_embeddings(self):
576
+ return self.embed_tokens
577
+
578
+ def set_input_embeddings(self, value):
579
+ self.embed_tokens = value
580
+
581
+
582
+ def forward(
583
+ self,
584
+ input_ids,
585
+ position_ids=None,
586
+ inputs_embeds=None,
587
+ cache_lens=None,
588
+ flex_attn=None,
589
+ exec_type=None,
590
+ tree_mask=None,
591
+ vis_lens=None,
592
+ sample_id=None,
593
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
594
+
595
+
596
+ if position_ids is None:
597
+ position_ids = torch.arange(0, input_ids.size(1))[None, :].to(input_ids.device)
598
+ if cache_lens is not None:
599
+ # print(f"cache_lens: {cache_lens}")
600
+ # print(f"position_ids: {position_ids}")
601
+ if tree_mask is None:
602
+ position_ids = position_ids + cache_lens[:, None]
603
+ else:
604
+ position_ids = tree_mask.sum(dim=-1) - 1 + cache_lens[:, None]
605
+
606
+ if inputs_embeds is None:
607
+ inputs_embeds = self.embed_tokens(input_ids)
608
+
609
+
610
+ hidden_states = inputs_embeds
611
+
612
+ # create position embeddings to be shared across the decoder layers
613
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
614
+
615
+ for decoder_layer in self.layers:
616
+
617
+ if self.gradient_checkpointing and self.training:
618
+ layer_outputs = self._gradient_checkpointing_func(
619
+ decoder_layer.__call__,
620
+ hidden_states,
621
+ position_embeddings,
622
+ cache_lens,
623
+ flex_attn,
624
+ exec_type,
625
+ tree_mask,
626
+ )
627
+ else:
628
+ layer_outputs = decoder_layer(
629
+ hidden_states,
630
+ position_embeddings,
631
+ cache_lens,
632
+ flex_attn,
633
+ exec_type,
634
+ tree_mask,
635
+ vis_lens,
636
+ sample_id,
637
+ )
638
+
639
+ hidden_states = layer_outputs[0]
640
+
641
+ hidden_states = self.norm(hidden_states)
642
+
643
+ if exec_type == "glide_training":
644
+ kv_cache = layer_outputs[1]
645
+ else:
646
+ kv_cache = None
647
+ # add hidden states from the last decoder layer
648
+
649
+ return BaseModelOutputWithPast(
650
+ last_hidden_state=hidden_states,
651
+ past_key_values=kv_cache,
652
+ hidden_states=None,
653
+ attentions=None,
654
+ )
655
+
656
+
657
+ class Qwen2LitTransForCausalLM(Qwen2LitTransPreTrainedModel, GenerationMixin):
658
+ _tied_weights_keys = ["lm_head.weight"]
659
+
660
+ def __init__(self, config):
661
+ super().__init__(config)
662
+ self.model = Qwen2LitTransModel(config)
663
+ self.vocab_size = config.vocab_size
664
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
665
+ self.eod = 151645
666
+ # Initialize weights and apply final processing
667
+ self.post_init()
668
+
669
+ def get_input_embeddings(self):
670
+ return self.model.embed_tokens
671
+
672
+ def set_input_embeddings(self, value):
673
+ self.model.embed_tokens = value
674
+
675
+ def set_max_gen_len(self, max_gen_len):
676
+ for layer in self.model.layers:
677
+ layer.self_attn.max_len = max_gen_len
678
+
679
+ def set_stream_len(self, sink_len, kv_len):
680
+ for layer in self.model.layers:
681
+ layer.self_attn.sink_len = sink_len
682
+ layer.self_attn.kv_len = kv_len
683
+ layer.self_attn.max_len = sink_len + kv_len
684
+
685
+ def set_log_ratio(self, log_ratio):
686
+ for layer in self.model.layers:
687
+ layer.self_attn.log_ratio = log_ratio
688
+
689
+ def get_output_embeddings(self):
690
+ return self.lm_head
691
+
692
+ def set_output_embeddings(self, new_embeddings):
693
+ self.lm_head = new_embeddings
694
+
695
+ def set_decoder(self, decoder):
696
+ self.model = decoder
697
+
698
+ def get_decoder(self):
699
+ return self.model
700
+
701
+ def forward(
702
+ self,
703
+ input_ids,
704
+ position_ids=None,
705
+ inputs_embeds=None,
706
+ labels=None,
707
+ cache_lens=None,
708
+ exec_type="training",
709
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
710
+
711
+ if exec_type == "free_training":
712
+
713
+ bsz, seqlen = position_ids.size()
714
+ eod_mask = position_ids.eq(self.eod)
715
+ eod_indices = torch.nonzero(eod_mask, as_tuple=False)
716
+
717
+
718
+ assert eod_indices.size(0) == bsz * self.sample_num, "dataset needs all batch samples have same output samples equasl to self.sample_num"
719
+
720
+ eod_col = eod_indices[:, 1].view(bsz, 10)
721
+ prefix_end, doc_end = eod_col[:, 0], eod_col[:, 1:]
722
+ # block_mask = construct_doc_mask(bsz, prefix_end, doc_end, seqlen)
723
+ # block_mask = create_block_mask(construct_doc_mask, B=None, H=None, Q_LEN=8192, KV_LEN=8192, _compile=True)
724
+ # flex_attn = torch.compile(partial(flex_attention, block_mask=block_mask, enable_gqa=True))
725
+ flex_attn = None
726
+ else:
727
+ flex_attn = None
728
+
729
+ outputs = self.model(
730
+ input_ids=input_ids,
731
+ position_ids=position_ids,
732
+ inputs_embeds=inputs_embeds,
733
+ cache_lens=cache_lens,
734
+ flex_attn=flex_attn,
735
+ exec_type=exec_type,
736
+ )
737
+
738
+ hidden_states = outputs[0]
739
+ last_kv = outputs[1]
740
+
741
+ loss = None
742
+ if labels is not None:
743
+ from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
744
+ loss_fn = LigerFusedLinearCrossEntropyLoss()
745
+ hidden_dim = hidden_states.size(-1)
746
+ loss = loss_fn(self.lm_head.weight, hidden_states[:, 1:].reshape(-1, hidden_dim), labels[:, :-1].view(-1))
747
+ else:
748
+ logits = self.lm_head(hidden_states[:, -128:, :]).float()
749
+
750
+ return CausalLMOutputWithPast(
751
+ loss=loss,
752
+ logits=logits,
753
+ past_key_values=last_kv,
754
+ hidden_states=None,
755
+ attentions=None,
756
+ )
757
+
758
+ def attn_vis(self, input_ids, padding_id=151645, sample_idx=0):
759
+ assert input_ids.size(0) == 1, "only support batch_size=1"
760
+ save_dir = "vis/sample_id"
761
+ os.makedirs(save_dir, exist_ok=True)
762
+ vis_lens = input_ids.eq(padding_id).sum()
763
+ outputs = self.model(
764
+ input_ids=input_ids,
765
+ cache_lens=None,
766
+ flex_attn=None,
767
+ exec_type="attn_vis",
768
+ vis_lens=vis_lens,
769
+ sample_id=sample_idx,
770
+ )
771
+
772
+
773
+ def generate(self, input_ids, max_gen_len=32000, pad_id=151643, eos_id=151645):
774
+ assert input_ids != None, "please give the input"
775
+ bsz = input_ids.size(0)
776
+ output_ids = input_ids.new_zeros((bsz, max_gen_len)).fill_(pad_id)
777
+
778
+ self.set_max_gen_len(max_gen_len)
779
+
780
+ cache_lens = input_ids.new_zeros((bsz)).int()
781
+ hidden_states = self.model.forward(input_ids, exec_type="prefill").last_hidden_state
782
+ input_len = input_ids.ne(pad_id).sum(dim=-1)
783
+ output_ids[:, 0] = self.lm_head(hidden_states[range(bsz), input_len-1, :]).argmax(dim=-1)
784
+ cache_lens += input_len
785
+ for step in range(1, max_gen_len):
786
+ if step % 128 == 1:
787
+ print(f"current we are decoding {step}-st token")
788
+ input_ids = output_ids[range(bsz), cache_lens - input_len].view(bsz, -1)
789
+ hidden_states = self.model.forward(input_ids, cache_lens=cache_lens.clone(), exec_type="decoding").last_hidden_state
790
+ llm_output = self.lm_head(hidden_states[:, -1, :]).argmax(dim=-1)
791
+ cache_lens += 1
792
+ output_ids[range(bsz), cache_lens - input_len] = llm_output.view(-1)
793
+ if (output_ids.eq(eos_id).any(dim=-1).all()):
794
+ mask = (output_ids == eos_id).int().cumsum(dim=1) >= 1
795
+ output_ids[mask] = pad_id
796
+ break
797
+
798
+ return output_ids
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "left",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.779220779220779,
5
+ "eval_steps": 100000,
6
+ "global_step": 368,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012987012987012988,
13
+ "grad_norm": 2.8171603240352896,
14
+ "learning_rate": 1e-05,
15
+ "loss": 0.5466,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.025974025974025976,
20
+ "grad_norm": 2.8001921525321785,
21
+ "learning_rate": 9.973958333333335e-06,
22
+ "loss": 0.547,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.03896103896103896,
27
+ "grad_norm": 1.5392157012941012,
28
+ "learning_rate": 9.947916666666667e-06,
29
+ "loss": 0.459,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.05194805194805195,
34
+ "grad_norm": 1.1573857414234903,
35
+ "learning_rate": 9.921875e-06,
36
+ "loss": 0.4574,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.06493506493506493,
41
+ "grad_norm": 0.8995358249149084,
42
+ "learning_rate": 9.895833333333334e-06,
43
+ "loss": 0.421,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.07792207792207792,
48
+ "grad_norm": 0.9904798146163455,
49
+ "learning_rate": 9.869791666666667e-06,
50
+ "loss": 0.3695,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.09090909090909091,
55
+ "grad_norm": 0.9283957441209373,
56
+ "learning_rate": 9.84375e-06,
57
+ "loss": 0.3627,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.1038961038961039,
62
+ "grad_norm": 0.7771365268975639,
63
+ "learning_rate": 9.817708333333334e-06,
64
+ "loss": 0.3576,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.11688311688311688,
69
+ "grad_norm": 0.8022346587811421,
70
+ "learning_rate": 9.791666666666666e-06,
71
+ "loss": 0.3191,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.12987012987012986,
76
+ "grad_norm": 0.819398725227865,
77
+ "learning_rate": 9.765625e-06,
78
+ "loss": 0.3287,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.14285714285714285,
83
+ "grad_norm": 0.6805869638028169,
84
+ "learning_rate": 9.739583333333334e-06,
85
+ "loss": 0.3184,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.15584415584415584,
90
+ "grad_norm": 0.5977289690207203,
91
+ "learning_rate": 9.713541666666668e-06,
92
+ "loss": 0.3123,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.16883116883116883,
97
+ "grad_norm": 0.6566097354029716,
98
+ "learning_rate": 9.6875e-06,
99
+ "loss": 0.3023,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.18181818181818182,
104
+ "grad_norm": 0.6239198357102247,
105
+ "learning_rate": 9.661458333333334e-06,
106
+ "loss": 0.2982,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.19480519480519481,
111
+ "grad_norm": 0.5689846226409981,
112
+ "learning_rate": 9.635416666666668e-06,
113
+ "loss": 0.3,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.2077922077922078,
118
+ "grad_norm": 0.5003921754161651,
119
+ "learning_rate": 9.609375000000001e-06,
120
+ "loss": 0.2806,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.22077922077922077,
125
+ "grad_norm": 0.4669430776472446,
126
+ "learning_rate": 9.583333333333335e-06,
127
+ "loss": 0.2712,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.23376623376623376,
132
+ "grad_norm": 0.4464962776593643,
133
+ "learning_rate": 9.557291666666667e-06,
134
+ "loss": 0.2649,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.24675324675324675,
139
+ "grad_norm": 0.4429858692736543,
140
+ "learning_rate": 9.531250000000001e-06,
141
+ "loss": 0.2709,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.2597402597402597,
146
+ "grad_norm": 0.4534349349480874,
147
+ "learning_rate": 9.505208333333335e-06,
148
+ "loss": 0.2659,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.2727272727272727,
153
+ "grad_norm": 0.45604692611068276,
154
+ "learning_rate": 9.479166666666667e-06,
155
+ "loss": 0.274,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.2857142857142857,
160
+ "grad_norm": 0.42386666170861903,
161
+ "learning_rate": 9.453125000000001e-06,
162
+ "loss": 0.2432,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.2987012987012987,
167
+ "grad_norm": 0.4539418581699697,
168
+ "learning_rate": 9.427083333333335e-06,
169
+ "loss": 0.2479,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.3116883116883117,
174
+ "grad_norm": 0.36873765590858,
175
+ "learning_rate": 9.401041666666667e-06,
176
+ "loss": 0.2533,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.3246753246753247,
181
+ "grad_norm": 0.3597660839493326,
182
+ "learning_rate": 9.375000000000001e-06,
183
+ "loss": 0.2427,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.33766233766233766,
188
+ "grad_norm": 0.43380755500127693,
189
+ "learning_rate": 9.348958333333335e-06,
190
+ "loss": 0.2629,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.35064935064935066,
195
+ "grad_norm": 0.4124812851086015,
196
+ "learning_rate": 9.322916666666667e-06,
197
+ "loss": 0.2555,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.36363636363636365,
202
+ "grad_norm": 0.3899208758432942,
203
+ "learning_rate": 9.296875e-06,
204
+ "loss": 0.2385,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.37662337662337664,
209
+ "grad_norm": 0.4307637034312358,
210
+ "learning_rate": 9.270833333333334e-06,
211
+ "loss": 0.2676,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.38961038961038963,
216
+ "grad_norm": 0.381920816609879,
217
+ "learning_rate": 9.244791666666667e-06,
218
+ "loss": 0.2366,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.4025974025974026,
223
+ "grad_norm": 0.3816394656089062,
224
+ "learning_rate": 9.21875e-06,
225
+ "loss": 0.2321,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.4155844155844156,
230
+ "grad_norm": 0.42534009456351374,
231
+ "learning_rate": 9.192708333333334e-06,
232
+ "loss": 0.265,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.42857142857142855,
237
+ "grad_norm": 0.37160388698301566,
238
+ "learning_rate": 9.166666666666666e-06,
239
+ "loss": 0.2373,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.44155844155844154,
244
+ "grad_norm": 0.3801489729504126,
245
+ "learning_rate": 9.140625e-06,
246
+ "loss": 0.2414,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.45454545454545453,
251
+ "grad_norm": 0.3913349306860418,
252
+ "learning_rate": 9.114583333333334e-06,
253
+ "loss": 0.2206,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.4675324675324675,
258
+ "grad_norm": 0.3943320977947317,
259
+ "learning_rate": 9.088541666666666e-06,
260
+ "loss": 0.223,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.4805194805194805,
265
+ "grad_norm": 0.3702281679651669,
266
+ "learning_rate": 9.0625e-06,
267
+ "loss": 0.2147,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.4935064935064935,
272
+ "grad_norm": 0.422823856947034,
273
+ "learning_rate": 9.036458333333334e-06,
274
+ "loss": 0.2493,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.5064935064935064,
279
+ "grad_norm": 0.38040718111635613,
280
+ "learning_rate": 9.010416666666668e-06,
281
+ "loss": 0.2245,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.5194805194805194,
286
+ "grad_norm": 0.3440649156844092,
287
+ "learning_rate": 8.984375000000002e-06,
288
+ "loss": 0.2216,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.5324675324675324,
293
+ "grad_norm": 0.3646349376051012,
294
+ "learning_rate": 8.958333333333334e-06,
295
+ "loss": 0.2127,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.5454545454545454,
300
+ "grad_norm": 0.34399756355860645,
301
+ "learning_rate": 8.932291666666668e-06,
302
+ "loss": 0.2148,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.5584415584415584,
307
+ "grad_norm": 0.3823461645884333,
308
+ "learning_rate": 8.906250000000001e-06,
309
+ "loss": 0.2367,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.5714285714285714,
314
+ "grad_norm": 0.3396475181827773,
315
+ "learning_rate": 8.880208333333335e-06,
316
+ "loss": 0.2097,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.5844155844155844,
321
+ "grad_norm": 0.40580965210317627,
322
+ "learning_rate": 8.854166666666667e-06,
323
+ "loss": 0.2539,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.5974025974025974,
328
+ "grad_norm": 0.3720924077531135,
329
+ "learning_rate": 8.828125000000001e-06,
330
+ "loss": 0.2416,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.6103896103896104,
335
+ "grad_norm": 0.36386894867601904,
336
+ "learning_rate": 8.802083333333335e-06,
337
+ "loss": 0.2159,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.6233766233766234,
342
+ "grad_norm": 0.39963494878899575,
343
+ "learning_rate": 8.776041666666667e-06,
344
+ "loss": 0.2155,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.6363636363636364,
349
+ "grad_norm": 0.41491580966165253,
350
+ "learning_rate": 8.750000000000001e-06,
351
+ "loss": 0.2441,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.6493506493506493,
356
+ "grad_norm": 0.413722874540919,
357
+ "learning_rate": 8.723958333333335e-06,
358
+ "loss": 0.2411,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.6623376623376623,
363
+ "grad_norm": 0.3627710473819897,
364
+ "learning_rate": 8.697916666666667e-06,
365
+ "loss": 0.2032,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.6753246753246753,
370
+ "grad_norm": 0.37183990680520124,
371
+ "learning_rate": 8.671875e-06,
372
+ "loss": 0.2297,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.6883116883116883,
377
+ "grad_norm": 0.3447910113593886,
378
+ "learning_rate": 8.645833333333335e-06,
379
+ "loss": 0.2152,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.7012987012987013,
384
+ "grad_norm": 0.3746990091470779,
385
+ "learning_rate": 8.619791666666667e-06,
386
+ "loss": 0.2196,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.7142857142857143,
391
+ "grad_norm": 0.38360093812511664,
392
+ "learning_rate": 8.59375e-06,
393
+ "loss": 0.2351,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.7272727272727273,
398
+ "grad_norm": 0.3401850780087419,
399
+ "learning_rate": 8.567708333333334e-06,
400
+ "loss": 0.1948,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.7402597402597403,
405
+ "grad_norm": 0.3341353144174157,
406
+ "learning_rate": 8.541666666666666e-06,
407
+ "loss": 0.1985,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.7532467532467533,
412
+ "grad_norm": 0.3317473111284822,
413
+ "learning_rate": 8.515625e-06,
414
+ "loss": 0.2019,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.7662337662337663,
419
+ "grad_norm": 0.37322280586801393,
420
+ "learning_rate": 8.489583333333334e-06,
421
+ "loss": 0.2258,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.7792207792207793,
426
+ "grad_norm": 0.36560124214432044,
427
+ "learning_rate": 8.463541666666666e-06,
428
+ "loss": 0.2188,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.7922077922077922,
433
+ "grad_norm": 0.3372344746230244,
434
+ "learning_rate": 8.4375e-06,
435
+ "loss": 0.2157,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.8051948051948052,
440
+ "grad_norm": 0.3486634994045839,
441
+ "learning_rate": 8.411458333333334e-06,
442
+ "loss": 0.202,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.8181818181818182,
447
+ "grad_norm": 0.39190266385589323,
448
+ "learning_rate": 8.385416666666668e-06,
449
+ "loss": 0.2148,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.8311688311688312,
454
+ "grad_norm": 0.36845516731632094,
455
+ "learning_rate": 8.359375e-06,
456
+ "loss": 0.2184,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.8441558441558441,
461
+ "grad_norm": 0.35457910296524253,
462
+ "learning_rate": 8.333333333333334e-06,
463
+ "loss": 0.2149,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.8571428571428571,
468
+ "grad_norm": 0.3603241548710575,
469
+ "learning_rate": 8.307291666666668e-06,
470
+ "loss": 0.2155,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.8701298701298701,
475
+ "grad_norm": 0.36738480430355874,
476
+ "learning_rate": 8.281250000000001e-06,
477
+ "loss": 0.2262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.8831168831168831,
482
+ "grad_norm": 0.3994418788798323,
483
+ "learning_rate": 8.255208333333335e-06,
484
+ "loss": 0.2237,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.8961038961038961,
489
+ "grad_norm": 0.3818265307209604,
490
+ "learning_rate": 8.229166666666667e-06,
491
+ "loss": 0.2134,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.9090909090909091,
496
+ "grad_norm": 0.3498820594838212,
497
+ "learning_rate": 8.203125000000001e-06,
498
+ "loss": 0.2069,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.922077922077922,
503
+ "grad_norm": 0.385917668930501,
504
+ "learning_rate": 8.177083333333335e-06,
505
+ "loss": 0.2123,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.935064935064935,
510
+ "grad_norm": 0.39236894265571665,
511
+ "learning_rate": 8.151041666666667e-06,
512
+ "loss": 0.2234,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.948051948051948,
517
+ "grad_norm": 0.3725234037920641,
518
+ "learning_rate": 8.125000000000001e-06,
519
+ "loss": 0.2066,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.961038961038961,
524
+ "grad_norm": 0.35880219297664784,
525
+ "learning_rate": 8.098958333333335e-06,
526
+ "loss": 0.1897,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.974025974025974,
531
+ "grad_norm": 0.3907765260625405,
532
+ "learning_rate": 8.072916666666667e-06,
533
+ "loss": 0.2294,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.987012987012987,
538
+ "grad_norm": 0.36488776593694006,
539
+ "learning_rate": 8.046875e-06,
540
+ "loss": 0.1958,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.0,
545
+ "grad_norm": 0.3787789187575852,
546
+ "learning_rate": 8.020833333333335e-06,
547
+ "loss": 0.2067,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.0129870129870129,
552
+ "grad_norm": 0.448465153413621,
553
+ "learning_rate": 7.994791666666667e-06,
554
+ "loss": 0.1244,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.025974025974026,
559
+ "grad_norm": 0.3915974513800719,
560
+ "learning_rate": 7.96875e-06,
561
+ "loss": 0.1243,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.0389610389610389,
566
+ "grad_norm": 0.3963769912247312,
567
+ "learning_rate": 7.942708333333334e-06,
568
+ "loss": 0.1172,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.051948051948052,
573
+ "grad_norm": 0.6014772610010978,
574
+ "learning_rate": 7.916666666666667e-06,
575
+ "loss": 0.1342,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.0649350649350648,
580
+ "grad_norm": 0.36513022825436714,
581
+ "learning_rate": 7.890625e-06,
582
+ "loss": 0.1155,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.077922077922078,
587
+ "grad_norm": 0.36495385435491967,
588
+ "learning_rate": 7.864583333333334e-06,
589
+ "loss": 0.1278,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.0909090909090908,
594
+ "grad_norm": 0.3817117188167101,
595
+ "learning_rate": 7.838541666666666e-06,
596
+ "loss": 0.1294,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.103896103896104,
601
+ "grad_norm": 0.3466875502600336,
602
+ "learning_rate": 7.8125e-06,
603
+ "loss": 0.1187,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.1168831168831168,
608
+ "grad_norm": 0.38224176701280815,
609
+ "learning_rate": 7.786458333333334e-06,
610
+ "loss": 0.1163,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.12987012987013,
615
+ "grad_norm": 0.387717741867272,
616
+ "learning_rate": 7.760416666666666e-06,
617
+ "loss": 0.1229,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.1428571428571428,
622
+ "grad_norm": 0.33922354465727605,
623
+ "learning_rate": 7.734375e-06,
624
+ "loss": 0.1026,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.155844155844156,
629
+ "grad_norm": 0.35409301762559464,
630
+ "learning_rate": 7.708333333333334e-06,
631
+ "loss": 0.1208,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.1688311688311688,
636
+ "grad_norm": 0.4114669310411066,
637
+ "learning_rate": 7.682291666666668e-06,
638
+ "loss": 0.138,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.1818181818181819,
643
+ "grad_norm": 0.3522471695287209,
644
+ "learning_rate": 7.656250000000001e-06,
645
+ "loss": 0.1268,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.1948051948051948,
650
+ "grad_norm": 0.3494758184949061,
651
+ "learning_rate": 7.630208333333334e-06,
652
+ "loss": 0.1118,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.2077922077922079,
657
+ "grad_norm": 0.35673580541279293,
658
+ "learning_rate": 7.6041666666666666e-06,
659
+ "loss": 0.111,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.2207792207792207,
664
+ "grad_norm": 0.2877699742066818,
665
+ "learning_rate": 7.578125e-06,
666
+ "loss": 0.1024,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.2337662337662338,
671
+ "grad_norm": 0.36809061483198696,
672
+ "learning_rate": 7.552083333333334e-06,
673
+ "loss": 0.125,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.2467532467532467,
678
+ "grad_norm": 0.3326924572780158,
679
+ "learning_rate": 7.526041666666667e-06,
680
+ "loss": 0.1165,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.2597402597402598,
685
+ "grad_norm": 0.3381064907954975,
686
+ "learning_rate": 7.500000000000001e-06,
687
+ "loss": 0.1242,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.2727272727272727,
692
+ "grad_norm": 0.31808537453343166,
693
+ "learning_rate": 7.473958333333334e-06,
694
+ "loss": 0.1194,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.2857142857142856,
699
+ "grad_norm": 0.3338293488215449,
700
+ "learning_rate": 7.447916666666667e-06,
701
+ "loss": 0.1045,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.2987012987012987,
706
+ "grad_norm": 0.32638382374328245,
707
+ "learning_rate": 7.421875000000001e-06,
708
+ "loss": 0.1274,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.3116883116883118,
713
+ "grad_norm": 0.3798687835449094,
714
+ "learning_rate": 7.395833333333335e-06,
715
+ "loss": 0.1216,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.3246753246753247,
720
+ "grad_norm": 0.42118782006430655,
721
+ "learning_rate": 7.369791666666667e-06,
722
+ "loss": 0.1116,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.3376623376623376,
727
+ "grad_norm": 0.31491431320109803,
728
+ "learning_rate": 7.343750000000001e-06,
729
+ "loss": 0.123,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.3506493506493507,
734
+ "grad_norm": 0.31006216567911504,
735
+ "learning_rate": 7.3177083333333345e-06,
736
+ "loss": 0.1186,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.3636363636363638,
741
+ "grad_norm": 0.32515923422393395,
742
+ "learning_rate": 7.291666666666667e-06,
743
+ "loss": 0.1069,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.3766233766233766,
748
+ "grad_norm": 0.3258624400110308,
749
+ "learning_rate": 7.265625e-06,
750
+ "loss": 0.0925,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.3896103896103895,
755
+ "grad_norm": 0.3147044898639944,
756
+ "learning_rate": 7.239583333333334e-06,
757
+ "loss": 0.1114,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.4025974025974026,
762
+ "grad_norm": 0.3155522217588101,
763
+ "learning_rate": 7.213541666666667e-06,
764
+ "loss": 0.1237,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 1.4155844155844157,
769
+ "grad_norm": 0.3144003636320752,
770
+ "learning_rate": 7.1875e-06,
771
+ "loss": 0.1159,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 1.4285714285714286,
776
+ "grad_norm": 0.32254719268793725,
777
+ "learning_rate": 7.161458333333334e-06,
778
+ "loss": 0.1196,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 1.4415584415584415,
783
+ "grad_norm": 0.315615751768773,
784
+ "learning_rate": 7.135416666666667e-06,
785
+ "loss": 0.1121,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 1.4545454545454546,
790
+ "grad_norm": 0.2995055345846169,
791
+ "learning_rate": 7.109375000000001e-06,
792
+ "loss": 0.1199,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 1.4675324675324675,
797
+ "grad_norm": 0.3457518743206924,
798
+ "learning_rate": 7.083333333333335e-06,
799
+ "loss": 0.1262,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 1.4805194805194806,
804
+ "grad_norm": 0.34216271471145815,
805
+ "learning_rate": 7.057291666666667e-06,
806
+ "loss": 0.1067,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 1.4935064935064934,
811
+ "grad_norm": 0.3178295536529888,
812
+ "learning_rate": 7.031250000000001e-06,
813
+ "loss": 0.1202,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 1.5064935064935066,
818
+ "grad_norm": 0.2819573454273538,
819
+ "learning_rate": 7.0052083333333345e-06,
820
+ "loss": 0.1033,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.5194805194805194,
825
+ "grad_norm": 0.32378485295884113,
826
+ "learning_rate": 6.979166666666667e-06,
827
+ "loss": 0.117,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.5324675324675323,
832
+ "grad_norm": 0.3154734102111175,
833
+ "learning_rate": 6.9531250000000004e-06,
834
+ "loss": 0.1089,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.5454545454545454,
839
+ "grad_norm": 0.3112595772562475,
840
+ "learning_rate": 6.927083333333334e-06,
841
+ "loss": 0.1131,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.5584415584415585,
846
+ "grad_norm": 0.308567184284047,
847
+ "learning_rate": 6.901041666666667e-06,
848
+ "loss": 0.0981,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.5714285714285714,
853
+ "grad_norm": 0.2941894268668758,
854
+ "learning_rate": 6.875e-06,
855
+ "loss": 0.0992,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.5844155844155843,
860
+ "grad_norm": 0.3244832758495866,
861
+ "learning_rate": 6.848958333333334e-06,
862
+ "loss": 0.1151,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.5974025974025974,
867
+ "grad_norm": 0.3486204249378559,
868
+ "learning_rate": 6.822916666666667e-06,
869
+ "loss": 0.1144,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.6103896103896105,
874
+ "grad_norm": 0.3108839874338576,
875
+ "learning_rate": 6.796875000000001e-06,
876
+ "loss": 0.1166,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.6233766233766234,
881
+ "grad_norm": 0.3362850203366801,
882
+ "learning_rate": 6.770833333333334e-06,
883
+ "loss": 0.1166,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.6363636363636362,
888
+ "grad_norm": 0.3001509180382928,
889
+ "learning_rate": 6.744791666666667e-06,
890
+ "loss": 0.1105,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.6493506493506493,
895
+ "grad_norm": 0.2997092451007753,
896
+ "learning_rate": 6.718750000000001e-06,
897
+ "loss": 0.1086,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.6623376623376624,
902
+ "grad_norm": 0.3427204611958163,
903
+ "learning_rate": 6.6927083333333345e-06,
904
+ "loss": 0.1054,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.6753246753246753,
909
+ "grad_norm": 0.2994776086256174,
910
+ "learning_rate": 6.666666666666667e-06,
911
+ "loss": 0.1154,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.6883116883116882,
916
+ "grad_norm": 0.31431249708262365,
917
+ "learning_rate": 6.6406250000000005e-06,
918
+ "loss": 0.1227,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.7012987012987013,
923
+ "grad_norm": 0.311578248576694,
924
+ "learning_rate": 6.614583333333334e-06,
925
+ "loss": 0.1084,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.7142857142857144,
930
+ "grad_norm": 0.3316176770331044,
931
+ "learning_rate": 6.5885416666666664e-06,
932
+ "loss": 0.1104,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.7272727272727273,
937
+ "grad_norm": 0.30426933433479547,
938
+ "learning_rate": 6.5625e-06,
939
+ "loss": 0.1125,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.7402597402597402,
944
+ "grad_norm": 0.28043555053128094,
945
+ "learning_rate": 6.536458333333334e-06,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.7532467532467533,
951
+ "grad_norm": 0.30386469668813254,
952
+ "learning_rate": 6.510416666666667e-06,
953
+ "loss": 0.1091,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.7662337662337664,
958
+ "grad_norm": 0.3224355180252757,
959
+ "learning_rate": 6.484375000000001e-06,
960
+ "loss": 0.1057,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.7792207792207793,
965
+ "grad_norm": 0.33241428871080214,
966
+ "learning_rate": 6.458333333333334e-06,
967
+ "loss": 0.1059,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.7922077922077921,
972
+ "grad_norm": 0.3147577283191284,
973
+ "learning_rate": 6.432291666666667e-06,
974
+ "loss": 0.1182,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.8051948051948052,
979
+ "grad_norm": 0.3078113700946741,
980
+ "learning_rate": 6.406250000000001e-06,
981
+ "loss": 0.1041,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.8181818181818183,
986
+ "grad_norm": 0.29167494344756056,
987
+ "learning_rate": 6.3802083333333345e-06,
988
+ "loss": 0.1118,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.8311688311688312,
993
+ "grad_norm": 0.3185841818138518,
994
+ "learning_rate": 6.354166666666667e-06,
995
+ "loss": 0.1086,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.844155844155844,
1000
+ "grad_norm": 0.32641774304326837,
1001
+ "learning_rate": 6.3281250000000005e-06,
1002
+ "loss": 0.1109,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.8571428571428572,
1007
+ "grad_norm": 0.3203734291459141,
1008
+ "learning_rate": 6.302083333333334e-06,
1009
+ "loss": 0.0955,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.87012987012987,
1014
+ "grad_norm": 0.2890498272171896,
1015
+ "learning_rate": 6.2760416666666665e-06,
1016
+ "loss": 0.101,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.883116883116883,
1021
+ "grad_norm": 0.29736342466973853,
1022
+ "learning_rate": 6.25e-06,
1023
+ "loss": 0.118,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.896103896103896,
1028
+ "grad_norm": 0.31984473875794944,
1029
+ "learning_rate": 6.223958333333334e-06,
1030
+ "loss": 0.1102,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.9090909090909092,
1035
+ "grad_norm": 0.3172704335356637,
1036
+ "learning_rate": 6.197916666666667e-06,
1037
+ "loss": 0.1082,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.922077922077922,
1042
+ "grad_norm": 0.2973111874066074,
1043
+ "learning_rate": 6.171875e-06,
1044
+ "loss": 0.1197,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.935064935064935,
1049
+ "grad_norm": 0.3095998340575272,
1050
+ "learning_rate": 6.145833333333334e-06,
1051
+ "loss": 0.1079,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.948051948051948,
1056
+ "grad_norm": 0.31787152770234606,
1057
+ "learning_rate": 6.119791666666667e-06,
1058
+ "loss": 0.0994,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.9610389610389611,
1063
+ "grad_norm": 0.28985366328378903,
1064
+ "learning_rate": 6.093750000000001e-06,
1065
+ "loss": 0.1202,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.974025974025974,
1070
+ "grad_norm": 0.3052098497087059,
1071
+ "learning_rate": 6.0677083333333346e-06,
1072
+ "loss": 0.1137,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.987012987012987,
1077
+ "grad_norm": 0.3066915552338606,
1078
+ "learning_rate": 6.041666666666667e-06,
1079
+ "loss": 0.1172,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 2.0,
1084
+ "grad_norm": 0.30629249293934785,
1085
+ "learning_rate": 6.0156250000000005e-06,
1086
+ "loss": 0.1032,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 2.012987012987013,
1091
+ "grad_norm": 0.35023782090844824,
1092
+ "learning_rate": 5.989583333333334e-06,
1093
+ "loss": 0.0557,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 2.0259740259740258,
1098
+ "grad_norm": 0.2862415000889261,
1099
+ "learning_rate": 5.9635416666666665e-06,
1100
+ "loss": 0.0656,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 2.038961038961039,
1105
+ "grad_norm": 0.25460716359572677,
1106
+ "learning_rate": 5.9375e-06,
1107
+ "loss": 0.0559,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 2.051948051948052,
1112
+ "grad_norm": 0.32189640709965023,
1113
+ "learning_rate": 5.911458333333334e-06,
1114
+ "loss": 0.0563,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 2.064935064935065,
1119
+ "grad_norm": 0.34761763544000046,
1120
+ "learning_rate": 5.885416666666667e-06,
1121
+ "loss": 0.0695,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 2.0779220779220777,
1126
+ "grad_norm": 0.2780054835792156,
1127
+ "learning_rate": 5.859375e-06,
1128
+ "loss": 0.0555,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 2.090909090909091,
1133
+ "grad_norm": 0.24032473108802174,
1134
+ "learning_rate": 5.833333333333334e-06,
1135
+ "loss": 0.0565,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 2.103896103896104,
1140
+ "grad_norm": 0.2950389512514924,
1141
+ "learning_rate": 5.807291666666667e-06,
1142
+ "loss": 0.0566,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 2.116883116883117,
1147
+ "grad_norm": 0.22432748520418566,
1148
+ "learning_rate": 5.781250000000001e-06,
1149
+ "loss": 0.056,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 2.1298701298701297,
1154
+ "grad_norm": 0.24784953484105113,
1155
+ "learning_rate": 5.755208333333335e-06,
1156
+ "loss": 0.0479,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 2.142857142857143,
1161
+ "grad_norm": 0.2702464812816263,
1162
+ "learning_rate": 5.729166666666667e-06,
1163
+ "loss": 0.0591,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 2.155844155844156,
1168
+ "grad_norm": 0.24201294320174244,
1169
+ "learning_rate": 5.7031250000000006e-06,
1170
+ "loss": 0.0599,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 2.168831168831169,
1175
+ "grad_norm": 0.27746964323966916,
1176
+ "learning_rate": 5.677083333333334e-06,
1177
+ "loss": 0.0533,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 2.1818181818181817,
1182
+ "grad_norm": 0.2897264068192118,
1183
+ "learning_rate": 5.6510416666666665e-06,
1184
+ "loss": 0.053,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 2.1948051948051948,
1189
+ "grad_norm": 0.27265023383714393,
1190
+ "learning_rate": 5.625e-06,
1191
+ "loss": 0.0663,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 2.207792207792208,
1196
+ "grad_norm": 0.23815823204180192,
1197
+ "learning_rate": 5.598958333333334e-06,
1198
+ "loss": 0.0553,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 2.220779220779221,
1203
+ "grad_norm": 0.27451200943828685,
1204
+ "learning_rate": 5.572916666666667e-06,
1205
+ "loss": 0.0628,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 2.2337662337662336,
1210
+ "grad_norm": 0.24756583000652174,
1211
+ "learning_rate": 5.546875e-06,
1212
+ "loss": 0.0556,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 2.2467532467532467,
1217
+ "grad_norm": 0.2544315370018155,
1218
+ "learning_rate": 5.520833333333334e-06,
1219
+ "loss": 0.0578,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 2.25974025974026,
1224
+ "grad_norm": 0.23275351662072738,
1225
+ "learning_rate": 5.494791666666667e-06,
1226
+ "loss": 0.0538,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 2.2727272727272725,
1231
+ "grad_norm": 0.2618251778102254,
1232
+ "learning_rate": 5.468750000000001e-06,
1233
+ "loss": 0.0658,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 2.2857142857142856,
1238
+ "grad_norm": 0.25188249686135555,
1239
+ "learning_rate": 5.442708333333334e-06,
1240
+ "loss": 0.0486,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 2.2987012987012987,
1245
+ "grad_norm": 0.28055649582376346,
1246
+ "learning_rate": 5.416666666666667e-06,
1247
+ "loss": 0.0626,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 2.311688311688312,
1252
+ "grad_norm": 0.24599632120103626,
1253
+ "learning_rate": 5.390625000000001e-06,
1254
+ "loss": 0.0583,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 2.324675324675325,
1259
+ "grad_norm": 0.27127338612129825,
1260
+ "learning_rate": 5.364583333333334e-06,
1261
+ "loss": 0.0586,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 2.3376623376623376,
1266
+ "grad_norm": 0.24409520592231887,
1267
+ "learning_rate": 5.3385416666666666e-06,
1268
+ "loss": 0.0546,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 2.3506493506493507,
1273
+ "grad_norm": 0.2730534578010532,
1274
+ "learning_rate": 5.3125e-06,
1275
+ "loss": 0.049,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 2.3636363636363638,
1280
+ "grad_norm": 0.3063550918757163,
1281
+ "learning_rate": 5.286458333333334e-06,
1282
+ "loss": 0.0626,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 2.3766233766233764,
1287
+ "grad_norm": 0.24974475183252906,
1288
+ "learning_rate": 5.260416666666666e-06,
1289
+ "loss": 0.0644,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 2.3896103896103895,
1294
+ "grad_norm": 0.27100592128125456,
1295
+ "learning_rate": 5.234375e-06,
1296
+ "loss": 0.0585,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 2.4025974025974026,
1301
+ "grad_norm": 0.2814186690984644,
1302
+ "learning_rate": 5.208333333333334e-06,
1303
+ "loss": 0.0582,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 2.4155844155844157,
1308
+ "grad_norm": 0.25261977006702085,
1309
+ "learning_rate": 5.182291666666667e-06,
1310
+ "loss": 0.0518,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 2.4285714285714284,
1315
+ "grad_norm": 0.2657725313570488,
1316
+ "learning_rate": 5.156250000000001e-06,
1317
+ "loss": 0.0578,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 2.4415584415584415,
1322
+ "grad_norm": 0.2546037193133823,
1323
+ "learning_rate": 5.130208333333334e-06,
1324
+ "loss": 0.0538,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 2.4545454545454546,
1329
+ "grad_norm": 0.281253389764468,
1330
+ "learning_rate": 5.104166666666667e-06,
1331
+ "loss": 0.0635,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 2.4675324675324677,
1336
+ "grad_norm": 0.26338794462461806,
1337
+ "learning_rate": 5.078125000000001e-06,
1338
+ "loss": 0.0562,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 2.4805194805194803,
1343
+ "grad_norm": 0.24941779389697705,
1344
+ "learning_rate": 5.0520833333333344e-06,
1345
+ "loss": 0.0556,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 2.4935064935064934,
1350
+ "grad_norm": 0.24447967903315854,
1351
+ "learning_rate": 5.026041666666667e-06,
1352
+ "loss": 0.0583,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 2.5064935064935066,
1357
+ "grad_norm": 0.23904209946561095,
1358
+ "learning_rate": 5e-06,
1359
+ "loss": 0.0466,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 2.5194805194805197,
1364
+ "grad_norm": 0.2647184458213586,
1365
+ "learning_rate": 4.973958333333333e-06,
1366
+ "loss": 0.0631,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 2.5324675324675323,
1371
+ "grad_norm": 0.22821154672037003,
1372
+ "learning_rate": 4.947916666666667e-06,
1373
+ "loss": 0.0473,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 2.5454545454545454,
1378
+ "grad_norm": 0.2626904902801862,
1379
+ "learning_rate": 4.921875e-06,
1380
+ "loss": 0.0506,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 2.5584415584415585,
1385
+ "grad_norm": 0.24930087318211805,
1386
+ "learning_rate": 4.895833333333333e-06,
1387
+ "loss": 0.0572,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 2.571428571428571,
1392
+ "grad_norm": 0.2481390560509281,
1393
+ "learning_rate": 4.869791666666667e-06,
1394
+ "loss": 0.0555,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 2.5844155844155843,
1399
+ "grad_norm": 0.2877573573303393,
1400
+ "learning_rate": 4.84375e-06,
1401
+ "loss": 0.067,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 2.5974025974025974,
1406
+ "grad_norm": 0.25217308853248577,
1407
+ "learning_rate": 4.817708333333334e-06,
1408
+ "loss": 0.0471,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 2.6103896103896105,
1413
+ "grad_norm": 0.24328918721469303,
1414
+ "learning_rate": 4.791666666666668e-06,
1415
+ "loss": 0.0576,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 2.6233766233766236,
1420
+ "grad_norm": 0.2523930869041385,
1421
+ "learning_rate": 4.765625000000001e-06,
1422
+ "loss": 0.0545,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 2.6363636363636362,
1427
+ "grad_norm": 0.2535471838454832,
1428
+ "learning_rate": 4.739583333333334e-06,
1429
+ "loss": 0.0625,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 2.6493506493506493,
1434
+ "grad_norm": 0.2712254471205784,
1435
+ "learning_rate": 4.7135416666666675e-06,
1436
+ "loss": 0.061,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 2.6623376623376624,
1441
+ "grad_norm": 0.26161221717819355,
1442
+ "learning_rate": 4.6875000000000004e-06,
1443
+ "loss": 0.0567,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 2.675324675324675,
1448
+ "grad_norm": 0.24838669747413192,
1449
+ "learning_rate": 4.661458333333333e-06,
1450
+ "loss": 0.0518,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 2.688311688311688,
1455
+ "grad_norm": 0.23966177399361988,
1456
+ "learning_rate": 4.635416666666667e-06,
1457
+ "loss": 0.0542,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 2.7012987012987013,
1462
+ "grad_norm": 0.24657984039301706,
1463
+ "learning_rate": 4.609375e-06,
1464
+ "loss": 0.0666,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 2.7142857142857144,
1469
+ "grad_norm": 0.2583103237439079,
1470
+ "learning_rate": 4.583333333333333e-06,
1471
+ "loss": 0.0545,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 2.7272727272727275,
1476
+ "grad_norm": 0.2562617620737508,
1477
+ "learning_rate": 4.557291666666667e-06,
1478
+ "loss": 0.0558,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 2.74025974025974,
1483
+ "grad_norm": 0.23308521833875492,
1484
+ "learning_rate": 4.53125e-06,
1485
+ "loss": 0.0496,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 2.7532467532467533,
1490
+ "grad_norm": 0.24092047046705078,
1491
+ "learning_rate": 4.505208333333334e-06,
1492
+ "loss": 0.0596,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 2.7662337662337664,
1497
+ "grad_norm": 0.27349855814243884,
1498
+ "learning_rate": 4.479166666666667e-06,
1499
+ "loss": 0.0468,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 2.779220779220779,
1504
+ "grad_norm": 0.2275758123203626,
1505
+ "learning_rate": 4.453125000000001e-06,
1506
+ "loss": 0.056,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 2.792207792207792,
1511
+ "grad_norm": 0.266884630074945,
1512
+ "learning_rate": 4.427083333333334e-06,
1513
+ "loss": 0.0571,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 2.8051948051948052,
1518
+ "grad_norm": 0.25024069366637947,
1519
+ "learning_rate": 4.4010416666666675e-06,
1520
+ "loss": 0.0642,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 2.8181818181818183,
1525
+ "grad_norm": 0.24857662695800786,
1526
+ "learning_rate": 4.3750000000000005e-06,
1527
+ "loss": 0.0486,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 2.8311688311688314,
1532
+ "grad_norm": 0.25080858473278267,
1533
+ "learning_rate": 4.3489583333333334e-06,
1534
+ "loss": 0.0584,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 2.844155844155844,
1539
+ "grad_norm": 0.24530740860883163,
1540
+ "learning_rate": 4.322916666666667e-06,
1541
+ "loss": 0.0633,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 2.857142857142857,
1546
+ "grad_norm": 0.23913022308407994,
1547
+ "learning_rate": 4.296875e-06,
1548
+ "loss": 0.0549,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 2.87012987012987,
1553
+ "grad_norm": 0.24149083025156237,
1554
+ "learning_rate": 4.270833333333333e-06,
1555
+ "loss": 0.0467,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 2.883116883116883,
1560
+ "grad_norm": 0.26965528602346694,
1561
+ "learning_rate": 4.244791666666667e-06,
1562
+ "loss": 0.0606,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 2.896103896103896,
1567
+ "grad_norm": 0.25365858810429237,
1568
+ "learning_rate": 4.21875e-06,
1569
+ "loss": 0.0694,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 2.909090909090909,
1574
+ "grad_norm": 0.24179541312218353,
1575
+ "learning_rate": 4.192708333333334e-06,
1576
+ "loss": 0.0616,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 2.9220779220779223,
1581
+ "grad_norm": 0.2361020434984871,
1582
+ "learning_rate": 4.166666666666667e-06,
1583
+ "loss": 0.0476,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 2.935064935064935,
1588
+ "grad_norm": 0.27226949918910437,
1589
+ "learning_rate": 4.140625000000001e-06,
1590
+ "loss": 0.0642,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 2.948051948051948,
1595
+ "grad_norm": 0.2527942476147371,
1596
+ "learning_rate": 4.114583333333334e-06,
1597
+ "loss": 0.0619,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 2.961038961038961,
1602
+ "grad_norm": 0.24251482806607963,
1603
+ "learning_rate": 4.0885416666666675e-06,
1604
+ "loss": 0.0525,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 2.974025974025974,
1609
+ "grad_norm": 0.23476269808521869,
1610
+ "learning_rate": 4.0625000000000005e-06,
1611
+ "loss": 0.062,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 2.987012987012987,
1616
+ "grad_norm": 0.2374808258403478,
1617
+ "learning_rate": 4.0364583333333335e-06,
1618
+ "loss": 0.0505,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 3.0,
1623
+ "grad_norm": 0.24928176045345568,
1624
+ "learning_rate": 4.010416666666667e-06,
1625
+ "loss": 0.0626,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 3.012987012987013,
1630
+ "grad_norm": 0.22194182328876036,
1631
+ "learning_rate": 3.984375e-06,
1632
+ "loss": 0.0344,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 3.0259740259740258,
1637
+ "grad_norm": 0.22872923006570003,
1638
+ "learning_rate": 3.958333333333333e-06,
1639
+ "loss": 0.0413,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 3.038961038961039,
1644
+ "grad_norm": 0.19665583235009848,
1645
+ "learning_rate": 3.932291666666667e-06,
1646
+ "loss": 0.0287,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 3.051948051948052,
1651
+ "grad_norm": 0.19667069366179346,
1652
+ "learning_rate": 3.90625e-06,
1653
+ "loss": 0.0352,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 3.064935064935065,
1658
+ "grad_norm": 0.215711200723706,
1659
+ "learning_rate": 3.880208333333333e-06,
1660
+ "loss": 0.0333,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 3.0779220779220777,
1665
+ "grad_norm": 0.2313666120277444,
1666
+ "learning_rate": 3.854166666666667e-06,
1667
+ "loss": 0.0284,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 3.090909090909091,
1672
+ "grad_norm": 0.23091064810625503,
1673
+ "learning_rate": 3.828125000000001e-06,
1674
+ "loss": 0.0328,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 3.103896103896104,
1679
+ "grad_norm": 0.20452236865758217,
1680
+ "learning_rate": 3.8020833333333333e-06,
1681
+ "loss": 0.0319,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 3.116883116883117,
1686
+ "grad_norm": 0.2130097271956879,
1687
+ "learning_rate": 3.776041666666667e-06,
1688
+ "loss": 0.0353,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 3.1298701298701297,
1693
+ "grad_norm": 0.17171823929322136,
1694
+ "learning_rate": 3.7500000000000005e-06,
1695
+ "loss": 0.0259,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 3.142857142857143,
1700
+ "grad_norm": 0.18378369851335255,
1701
+ "learning_rate": 3.7239583333333335e-06,
1702
+ "loss": 0.0313,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 3.155844155844156,
1707
+ "grad_norm": 0.1828525728293844,
1708
+ "learning_rate": 3.6979166666666673e-06,
1709
+ "loss": 0.028,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 3.168831168831169,
1714
+ "grad_norm": 0.19380765006793751,
1715
+ "learning_rate": 3.6718750000000003e-06,
1716
+ "loss": 0.0289,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 3.1818181818181817,
1721
+ "grad_norm": 0.1990094351044486,
1722
+ "learning_rate": 3.6458333333333333e-06,
1723
+ "loss": 0.027,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 3.1948051948051948,
1728
+ "grad_norm": 0.18792815598678744,
1729
+ "learning_rate": 3.619791666666667e-06,
1730
+ "loss": 0.0291,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 3.207792207792208,
1735
+ "grad_norm": 0.18192941363864568,
1736
+ "learning_rate": 3.59375e-06,
1737
+ "loss": 0.0333,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 3.220779220779221,
1742
+ "grad_norm": 0.19920093771078823,
1743
+ "learning_rate": 3.5677083333333335e-06,
1744
+ "loss": 0.0359,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 3.2337662337662336,
1749
+ "grad_norm": 0.20752665916487095,
1750
+ "learning_rate": 3.5416666666666673e-06,
1751
+ "loss": 0.0346,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 3.2467532467532467,
1756
+ "grad_norm": 0.19735194752925486,
1757
+ "learning_rate": 3.5156250000000003e-06,
1758
+ "loss": 0.0286,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 3.25974025974026,
1763
+ "grad_norm": 0.21107169053286765,
1764
+ "learning_rate": 3.4895833333333333e-06,
1765
+ "loss": 0.0302,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 3.2727272727272725,
1770
+ "grad_norm": 0.19257404946331436,
1771
+ "learning_rate": 3.463541666666667e-06,
1772
+ "loss": 0.0266,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 3.2857142857142856,
1777
+ "grad_norm": 0.20416526855617004,
1778
+ "learning_rate": 3.4375e-06,
1779
+ "loss": 0.0338,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 3.2987012987012987,
1784
+ "grad_norm": 0.16009297749675383,
1785
+ "learning_rate": 3.4114583333333335e-06,
1786
+ "loss": 0.0298,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 3.311688311688312,
1791
+ "grad_norm": 0.1865805004238836,
1792
+ "learning_rate": 3.385416666666667e-06,
1793
+ "loss": 0.0381,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 3.324675324675325,
1798
+ "grad_norm": 0.1856518020717426,
1799
+ "learning_rate": 3.3593750000000003e-06,
1800
+ "loss": 0.032,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 3.3376623376623376,
1805
+ "grad_norm": 0.1643615680531049,
1806
+ "learning_rate": 3.3333333333333333e-06,
1807
+ "loss": 0.0261,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 3.3506493506493507,
1812
+ "grad_norm": 0.20350173056124413,
1813
+ "learning_rate": 3.307291666666667e-06,
1814
+ "loss": 0.0289,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 3.3636363636363638,
1819
+ "grad_norm": 0.1851001849213331,
1820
+ "learning_rate": 3.28125e-06,
1821
+ "loss": 0.0303,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 3.3766233766233764,
1826
+ "grad_norm": 0.17486718674776422,
1827
+ "learning_rate": 3.2552083333333335e-06,
1828
+ "loss": 0.0341,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 3.3896103896103895,
1833
+ "grad_norm": 0.20208654835258116,
1834
+ "learning_rate": 3.229166666666667e-06,
1835
+ "loss": 0.0292,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 3.4025974025974026,
1840
+ "grad_norm": 0.1879927363412167,
1841
+ "learning_rate": 3.2031250000000004e-06,
1842
+ "loss": 0.029,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 3.4155844155844157,
1847
+ "grad_norm": 0.2092150414129076,
1848
+ "learning_rate": 3.1770833333333333e-06,
1849
+ "loss": 0.0335,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 3.4285714285714284,
1854
+ "grad_norm": 0.1828398699501031,
1855
+ "learning_rate": 3.151041666666667e-06,
1856
+ "loss": 0.0287,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 3.4415584415584415,
1861
+ "grad_norm": 0.1646440626911746,
1862
+ "learning_rate": 3.125e-06,
1863
+ "loss": 0.0249,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 3.4545454545454546,
1868
+ "grad_norm": 0.2213658118877642,
1869
+ "learning_rate": 3.0989583333333336e-06,
1870
+ "loss": 0.0313,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 3.4675324675324677,
1875
+ "grad_norm": 0.19833753553756947,
1876
+ "learning_rate": 3.072916666666667e-06,
1877
+ "loss": 0.0305,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 3.4805194805194803,
1882
+ "grad_norm": 0.18639002939061947,
1883
+ "learning_rate": 3.0468750000000004e-06,
1884
+ "loss": 0.0285,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 3.4935064935064934,
1889
+ "grad_norm": 0.2049138683286163,
1890
+ "learning_rate": 3.0208333333333334e-06,
1891
+ "loss": 0.0253,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 3.5064935064935066,
1896
+ "grad_norm": 0.17884962390491255,
1897
+ "learning_rate": 2.994791666666667e-06,
1898
+ "loss": 0.0307,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 3.5194805194805197,
1903
+ "grad_norm": 0.1982271960154676,
1904
+ "learning_rate": 2.96875e-06,
1905
+ "loss": 0.0269,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 3.5324675324675323,
1910
+ "grad_norm": 0.1802446997280461,
1911
+ "learning_rate": 2.9427083333333336e-06,
1912
+ "loss": 0.0289,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 3.5454545454545454,
1917
+ "grad_norm": 0.22296142453499057,
1918
+ "learning_rate": 2.916666666666667e-06,
1919
+ "loss": 0.0312,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 3.5584415584415585,
1924
+ "grad_norm": 0.20453986728427528,
1925
+ "learning_rate": 2.8906250000000004e-06,
1926
+ "loss": 0.0314,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 3.571428571428571,
1931
+ "grad_norm": 0.18470206760727637,
1932
+ "learning_rate": 2.8645833333333334e-06,
1933
+ "loss": 0.0224,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 3.5844155844155843,
1938
+ "grad_norm": 0.18999613246744235,
1939
+ "learning_rate": 2.838541666666667e-06,
1940
+ "loss": 0.0362,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 3.5974025974025974,
1945
+ "grad_norm": 0.1680826823967811,
1946
+ "learning_rate": 2.8125e-06,
1947
+ "loss": 0.0295,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 3.6103896103896105,
1952
+ "grad_norm": 0.1750343035924861,
1953
+ "learning_rate": 2.7864583333333336e-06,
1954
+ "loss": 0.0252,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 3.6233766233766236,
1959
+ "grad_norm": 0.1889879529926468,
1960
+ "learning_rate": 2.760416666666667e-06,
1961
+ "loss": 0.0251,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 3.6363636363636362,
1966
+ "grad_norm": 0.18898957778162337,
1967
+ "learning_rate": 2.7343750000000004e-06,
1968
+ "loss": 0.0289,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 3.6493506493506493,
1973
+ "grad_norm": 0.178208525512879,
1974
+ "learning_rate": 2.7083333333333334e-06,
1975
+ "loss": 0.0256,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 3.6623376623376624,
1980
+ "grad_norm": 0.18961129083755054,
1981
+ "learning_rate": 2.682291666666667e-06,
1982
+ "loss": 0.0338,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 3.675324675324675,
1987
+ "grad_norm": 0.19080605075919305,
1988
+ "learning_rate": 2.65625e-06,
1989
+ "loss": 0.0267,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 3.688311688311688,
1994
+ "grad_norm": 0.2147288655205537,
1995
+ "learning_rate": 2.630208333333333e-06,
1996
+ "loss": 0.0261,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 3.7012987012987013,
2001
+ "grad_norm": 0.17582709254045928,
2002
+ "learning_rate": 2.604166666666667e-06,
2003
+ "loss": 0.0223,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 3.7142857142857144,
2008
+ "grad_norm": 0.17094890369659926,
2009
+ "learning_rate": 2.5781250000000004e-06,
2010
+ "loss": 0.0292,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 3.7272727272727275,
2015
+ "grad_norm": 0.1998709196442666,
2016
+ "learning_rate": 2.5520833333333334e-06,
2017
+ "loss": 0.0304,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 3.74025974025974,
2022
+ "grad_norm": 0.17072439958723487,
2023
+ "learning_rate": 2.5260416666666672e-06,
2024
+ "loss": 0.0269,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 3.7532467532467533,
2029
+ "grad_norm": 0.1903923054426443,
2030
+ "learning_rate": 2.5e-06,
2031
+ "loss": 0.0296,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 3.7662337662337664,
2036
+ "grad_norm": 0.18728539960718932,
2037
+ "learning_rate": 2.4739583333333336e-06,
2038
+ "loss": 0.0286,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 3.779220779220779,
2043
+ "grad_norm": 0.1747917940824676,
2044
+ "learning_rate": 2.4479166666666666e-06,
2045
+ "loss": 0.0349,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 3.792207792207792,
2050
+ "grad_norm": 0.17515549499079433,
2051
+ "learning_rate": 2.421875e-06,
2052
+ "loss": 0.027,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 3.8051948051948052,
2057
+ "grad_norm": 0.17289038920757535,
2058
+ "learning_rate": 2.395833333333334e-06,
2059
+ "loss": 0.0308,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 3.8181818181818183,
2064
+ "grad_norm": 0.1620641486147313,
2065
+ "learning_rate": 2.369791666666667e-06,
2066
+ "loss": 0.0235,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 3.8311688311688314,
2071
+ "grad_norm": 0.1800272114039067,
2072
+ "learning_rate": 2.3437500000000002e-06,
2073
+ "loss": 0.029,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 3.844155844155844,
2078
+ "grad_norm": 0.1714629421802426,
2079
+ "learning_rate": 2.3177083333333336e-06,
2080
+ "loss": 0.0325,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 3.857142857142857,
2085
+ "grad_norm": 0.19442415161637205,
2086
+ "learning_rate": 2.2916666666666666e-06,
2087
+ "loss": 0.0289,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 3.87012987012987,
2092
+ "grad_norm": 0.17365311658981006,
2093
+ "learning_rate": 2.265625e-06,
2094
+ "loss": 0.0264,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 3.883116883116883,
2099
+ "grad_norm": 0.1562256172576751,
2100
+ "learning_rate": 2.2395833333333334e-06,
2101
+ "loss": 0.0204,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 3.896103896103896,
2106
+ "grad_norm": 0.18527276756636948,
2107
+ "learning_rate": 2.213541666666667e-06,
2108
+ "loss": 0.038,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 3.909090909090909,
2113
+ "grad_norm": 0.185548190702714,
2114
+ "learning_rate": 2.1875000000000002e-06,
2115
+ "loss": 0.0274,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 3.9220779220779223,
2120
+ "grad_norm": 0.18710521272243544,
2121
+ "learning_rate": 2.1614583333333336e-06,
2122
+ "loss": 0.0282,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 3.935064935064935,
2127
+ "grad_norm": 0.19705254815926593,
2128
+ "learning_rate": 2.1354166666666666e-06,
2129
+ "loss": 0.029,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 3.948051948051948,
2134
+ "grad_norm": 0.18926365228746053,
2135
+ "learning_rate": 2.109375e-06,
2136
+ "loss": 0.031,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 3.961038961038961,
2141
+ "grad_norm": 0.20932783484563577,
2142
+ "learning_rate": 2.0833333333333334e-06,
2143
+ "loss": 0.0347,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 3.974025974025974,
2148
+ "grad_norm": 0.1844456439281899,
2149
+ "learning_rate": 2.057291666666667e-06,
2150
+ "loss": 0.0297,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 3.987012987012987,
2155
+ "grad_norm": 0.17809794425485584,
2156
+ "learning_rate": 2.0312500000000002e-06,
2157
+ "loss": 0.0286,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 4.0,
2162
+ "grad_norm": 0.20096357456266348,
2163
+ "learning_rate": 2.0052083333333337e-06,
2164
+ "loss": 0.0258,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 4.012987012987013,
2169
+ "grad_norm": 0.15779488457929053,
2170
+ "learning_rate": 1.9791666666666666e-06,
2171
+ "loss": 0.0197,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 4.025974025974026,
2176
+ "grad_norm": 0.17635189527472814,
2177
+ "learning_rate": 1.953125e-06,
2178
+ "loss": 0.0214,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 4.038961038961039,
2183
+ "grad_norm": 0.13517784425731946,
2184
+ "learning_rate": 1.9270833333333334e-06,
2185
+ "loss": 0.0226,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 4.0519480519480515,
2190
+ "grad_norm": 0.12354611702984837,
2191
+ "learning_rate": 1.9010416666666666e-06,
2192
+ "loss": 0.0211,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 4.064935064935065,
2197
+ "grad_norm": 0.12929184375596317,
2198
+ "learning_rate": 1.8750000000000003e-06,
2199
+ "loss": 0.0184,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 4.077922077922078,
2204
+ "grad_norm": 0.13540347091068558,
2205
+ "learning_rate": 1.8489583333333337e-06,
2206
+ "loss": 0.0216,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 4.090909090909091,
2211
+ "grad_norm": 0.16456545986510454,
2212
+ "learning_rate": 1.8229166666666666e-06,
2213
+ "loss": 0.0275,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 4.103896103896104,
2218
+ "grad_norm": 0.13103783773070332,
2219
+ "learning_rate": 1.796875e-06,
2220
+ "loss": 0.0167,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 4.116883116883117,
2225
+ "grad_norm": 0.15039425342491727,
2226
+ "learning_rate": 1.7708333333333337e-06,
2227
+ "loss": 0.0176,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 4.12987012987013,
2232
+ "grad_norm": 0.1528874968260015,
2233
+ "learning_rate": 1.7447916666666667e-06,
2234
+ "loss": 0.0228,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 4.142857142857143,
2239
+ "grad_norm": 0.1277979944302909,
2240
+ "learning_rate": 1.71875e-06,
2241
+ "loss": 0.0153,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 4.1558441558441555,
2246
+ "grad_norm": 0.10986972687139382,
2247
+ "learning_rate": 1.6927083333333335e-06,
2248
+ "loss": 0.0114,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 4.1688311688311686,
2253
+ "grad_norm": 0.12327195530898087,
2254
+ "learning_rate": 1.6666666666666667e-06,
2255
+ "loss": 0.0247,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 4.181818181818182,
2260
+ "grad_norm": 0.1303364571800614,
2261
+ "learning_rate": 1.640625e-06,
2262
+ "loss": 0.0132,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 4.194805194805195,
2267
+ "grad_norm": 0.1129046695889519,
2268
+ "learning_rate": 1.6145833333333335e-06,
2269
+ "loss": 0.0137,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 4.207792207792208,
2274
+ "grad_norm": 0.12487716628769142,
2275
+ "learning_rate": 1.5885416666666667e-06,
2276
+ "loss": 0.0171,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 4.220779220779221,
2281
+ "grad_norm": 0.11121142713696242,
2282
+ "learning_rate": 1.5625e-06,
2283
+ "loss": 0.0119,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 4.233766233766234,
2288
+ "grad_norm": 0.12219540809008053,
2289
+ "learning_rate": 1.5364583333333335e-06,
2290
+ "loss": 0.02,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 4.246753246753247,
2295
+ "grad_norm": 0.1231988249512158,
2296
+ "learning_rate": 1.5104166666666667e-06,
2297
+ "loss": 0.0167,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 4.259740259740259,
2302
+ "grad_norm": 0.12591039931221573,
2303
+ "learning_rate": 1.484375e-06,
2304
+ "loss": 0.0145,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 4.2727272727272725,
2309
+ "grad_norm": 0.13528042945474514,
2310
+ "learning_rate": 1.4583333333333335e-06,
2311
+ "loss": 0.0164,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 4.285714285714286,
2316
+ "grad_norm": 0.13318619366466836,
2317
+ "learning_rate": 1.4322916666666667e-06,
2318
+ "loss": 0.0178,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 4.298701298701299,
2323
+ "grad_norm": 0.1147621867962911,
2324
+ "learning_rate": 1.40625e-06,
2325
+ "loss": 0.0146,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 4.311688311688312,
2330
+ "grad_norm": 0.1171420417701479,
2331
+ "learning_rate": 1.3802083333333335e-06,
2332
+ "loss": 0.0155,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 4.324675324675325,
2337
+ "grad_norm": 0.15069462003471634,
2338
+ "learning_rate": 1.3541666666666667e-06,
2339
+ "loss": 0.0169,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 4.337662337662338,
2344
+ "grad_norm": 0.13369044996596968,
2345
+ "learning_rate": 1.328125e-06,
2346
+ "loss": 0.02,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 4.35064935064935,
2351
+ "grad_norm": 0.1454995879584439,
2352
+ "learning_rate": 1.3020833333333335e-06,
2353
+ "loss": 0.0172,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 4.363636363636363,
2358
+ "grad_norm": 0.10957228964118756,
2359
+ "learning_rate": 1.2760416666666667e-06,
2360
+ "loss": 0.0146,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 4.376623376623376,
2365
+ "grad_norm": 0.13794250836423072,
2366
+ "learning_rate": 1.25e-06,
2367
+ "loss": 0.0186,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 4.3896103896103895,
2372
+ "grad_norm": 0.13155919219887055,
2373
+ "learning_rate": 1.2239583333333333e-06,
2374
+ "loss": 0.02,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 4.402597402597403,
2379
+ "grad_norm": 0.13527086701859414,
2380
+ "learning_rate": 1.197916666666667e-06,
2381
+ "loss": 0.0194,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 4.415584415584416,
2386
+ "grad_norm": 0.13783015873528512,
2387
+ "learning_rate": 1.1718750000000001e-06,
2388
+ "loss": 0.016,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 4.428571428571429,
2393
+ "grad_norm": 0.14817876036194735,
2394
+ "learning_rate": 1.1458333333333333e-06,
2395
+ "loss": 0.0202,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 4.441558441558442,
2400
+ "grad_norm": 0.13486669752884248,
2401
+ "learning_rate": 1.1197916666666667e-06,
2402
+ "loss": 0.0133,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 4.454545454545454,
2407
+ "grad_norm": 0.127193126169577,
2408
+ "learning_rate": 1.0937500000000001e-06,
2409
+ "loss": 0.0225,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 4.467532467532467,
2414
+ "grad_norm": 0.12716918562412002,
2415
+ "learning_rate": 1.0677083333333333e-06,
2416
+ "loss": 0.0161,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 4.48051948051948,
2421
+ "grad_norm": 0.12022862958417269,
2422
+ "learning_rate": 1.0416666666666667e-06,
2423
+ "loss": 0.0178,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 4.4935064935064934,
2428
+ "grad_norm": 0.11185223739581632,
2429
+ "learning_rate": 1.0156250000000001e-06,
2430
+ "loss": 0.0125,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 4.5064935064935066,
2435
+ "grad_norm": 0.12306589435982454,
2436
+ "learning_rate": 9.895833333333333e-07,
2437
+ "loss": 0.0177,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 4.51948051948052,
2442
+ "grad_norm": 0.1356833136264956,
2443
+ "learning_rate": 9.635416666666667e-07,
2444
+ "loss": 0.0225,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 4.532467532467533,
2449
+ "grad_norm": 0.12707329769968861,
2450
+ "learning_rate": 9.375000000000001e-07,
2451
+ "loss": 0.0144,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 4.545454545454545,
2456
+ "grad_norm": 0.13157923603380584,
2457
+ "learning_rate": 9.114583333333333e-07,
2458
+ "loss": 0.0246,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 4.558441558441558,
2463
+ "grad_norm": 0.11570507668897385,
2464
+ "learning_rate": 8.854166666666668e-07,
2465
+ "loss": 0.0136,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 4.571428571428571,
2470
+ "grad_norm": 0.1133212555134258,
2471
+ "learning_rate": 8.59375e-07,
2472
+ "loss": 0.016,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 4.584415584415584,
2477
+ "grad_norm": 0.11403791282962417,
2478
+ "learning_rate": 8.333333333333333e-07,
2479
+ "loss": 0.0173,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 4.597402597402597,
2484
+ "grad_norm": 0.1261694785889651,
2485
+ "learning_rate": 8.072916666666667e-07,
2486
+ "loss": 0.0164,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 4.6103896103896105,
2491
+ "grad_norm": 0.1647802144483293,
2492
+ "learning_rate": 7.8125e-07,
2493
+ "loss": 0.0194,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 4.623376623376624,
2498
+ "grad_norm": 0.12321856169539074,
2499
+ "learning_rate": 7.552083333333333e-07,
2500
+ "loss": 0.0154,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 4.636363636363637,
2505
+ "grad_norm": 0.11947597399789361,
2506
+ "learning_rate": 7.291666666666667e-07,
2507
+ "loss": 0.0128,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 4.64935064935065,
2512
+ "grad_norm": 0.12412634751604261,
2513
+ "learning_rate": 7.03125e-07,
2514
+ "loss": 0.0216,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 4.662337662337662,
2519
+ "grad_norm": 0.10648985459552097,
2520
+ "learning_rate": 6.770833333333333e-07,
2521
+ "loss": 0.016,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 4.675324675324675,
2526
+ "grad_norm": 0.10795065481176093,
2527
+ "learning_rate": 6.510416666666668e-07,
2528
+ "loss": 0.0149,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 4.688311688311688,
2533
+ "grad_norm": 0.13861642312992048,
2534
+ "learning_rate": 6.25e-07,
2535
+ "loss": 0.0197,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 4.701298701298701,
2540
+ "grad_norm": 0.12770449682753193,
2541
+ "learning_rate": 5.989583333333335e-07,
2542
+ "loss": 0.0221,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 4.714285714285714,
2547
+ "grad_norm": 0.10430014511475291,
2548
+ "learning_rate": 5.729166666666667e-07,
2549
+ "loss": 0.0129,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 4.7272727272727275,
2554
+ "grad_norm": 0.11966755573044428,
2555
+ "learning_rate": 5.468750000000001e-07,
2556
+ "loss": 0.0206,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 4.740259740259741,
2561
+ "grad_norm": 0.1275756019900647,
2562
+ "learning_rate": 5.208333333333334e-07,
2563
+ "loss": 0.0171,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 4.753246753246753,
2568
+ "grad_norm": 0.12808966422886903,
2569
+ "learning_rate": 4.947916666666667e-07,
2570
+ "loss": 0.0192,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 4.766233766233766,
2575
+ "grad_norm": 0.12149697378823344,
2576
+ "learning_rate": 4.6875000000000006e-07,
2577
+ "loss": 0.0143,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 4.779220779220779,
2582
+ "grad_norm": 0.1120503286114493,
2583
+ "learning_rate": 4.427083333333334e-07,
2584
+ "loss": 0.013,
2585
+ "step": 368
2586
+ }
2587
+ ],
2588
+ "logging_steps": 1,
2589
+ "max_steps": 385,
2590
+ "num_input_tokens_seen": 0,
2591
+ "num_train_epochs": 5,
2592
+ "save_steps": 16,
2593
+ "stateful_callbacks": {
2594
+ "TrainerControl": {
2595
+ "args": {
2596
+ "should_epoch_stop": false,
2597
+ "should_evaluate": false,
2598
+ "should_log": false,
2599
+ "should_save": true,
2600
+ "should_training_stop": false
2601
+ },
2602
+ "attributes": {}
2603
+ }
2604
+ },
2605
+ "total_flos": 552596339163136.0,
2606
+ "train_batch_size": 1,
2607
+ "trial_name": null,
2608
+ "trial_params": null
2609
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb408162d81ffdc86b051fce80a9ab93b4a23de9990617f1f2aefd0752e45c3
3
+ size 7224
vocab.json ADDED
The diff for this file is too large to render. See raw diff