Manually merge local checkpoint
Browse files- README.md +60 -3
- added_tokens.json +24 -0
- config.json +32 -0
- configuration_qwenLitTrans.py +202 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.safetensors.index.json +778 -0
- modeling_qwenLitTrans.py +798 -0
- special_tokens_map.json +31 -0
- tokenizer_config.json +208 -0
- trainer_state.json +2609 -0
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- RUC-AIBOX/long_form_thought_data_5k
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2.5-32B-Instruct
|
7 |
+
---
|
8 |
+
# Model Card for Model ID
|
9 |
+
|
10 |
+
## Model Details:
|
11 |
+
|
12 |
+
- **Base Model:** Qwen/Qwen2.5-32B-Instruct
|
13 |
+
- **datasets:** RUC-AIBOX/long_form_thought_data_5k
|
14 |
+
- **Training Framework:** Supervised Fine-tuning
|
15 |
+
- **Parameters:** 32B
|
16 |
+
- **Special Features:**
|
17 |
+
- Replace 50% full attention layers with streaming attention
|
18 |
+
|
19 |
+
---
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
**QwQ-LightTransfer** is a 32B-parameter model built on **Qwen/Qwen2.5-32B-Instruct** and fine-tuned via SFT on **RUC-AIBOX/long_form_thought_data_5k**. By replacing 50% of the model’s full attention layers with streaming attention,specifically layers [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 37, 38, 43, 51], it substantially reduces memory costs. QwQ-LightTransfer scores 53.3% on the advanced math benchmark AIME24, demonstrating its strong o1-like long reasoning capabilities.
|
24 |
+
|
25 |
+
```
|
26 |
+
import torch
|
27 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
28 |
+
|
29 |
+
model_name = 'QwQ-32B-LightTransfer'
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16,trust_remote_code=True,device_map='auto')
|
33 |
+
|
34 |
+
text = "Hi, I'm QwQ-32B-LightTransfer,"
|
35 |
+
|
36 |
+
inputs = tokenizer(text, return_tensors='pt').to(model.device)
|
37 |
+
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model.generate(inputs['input_ids'],max_gen_len=256)
|
41 |
+
|
42 |
+
print(tokenizer.decode(outputs[0]))
|
43 |
+
```
|
44 |
+
|
45 |
+
|
46 |
+
## Citation
|
47 |
+
|
48 |
+
|
49 |
+
```
|
50 |
+
@misc{zhang2025lighttransferlongcontextllmsecretly,
|
51 |
+
title={LightTransfer: Your Long-Context LLM is Secretly a Hybrid Model with Effortless Adaptation},
|
52 |
+
author={Xuan Zhang and Fengzhuo Zhang and Cunxiao Du and Chao Du and Tianyu Pang and Wei Gao and Min Lin},
|
53 |
+
year={2025},
|
54 |
+
eprint={2410.13846},
|
55 |
+
archivePrefix={arXiv},
|
56 |
+
primaryClass={cs.CL},
|
57 |
+
url={https://arxiv.org/abs/2410.13846},
|
58 |
+
}
|
59 |
+
```
|
60 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2LitTransForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_qwenLitTrans.Qwen2LitTransConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_qwenLitTrans.Qwen2LitTransForCausalLM"
|
8 |
+
},
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"bos_token_id": 151643,
|
11 |
+
"eos_token_id": 151645,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 5120,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 27648,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
+
"max_window_layers": 70,
|
18 |
+
"model_type": "qwen2littrans",
|
19 |
+
"num_attention_heads": 40,
|
20 |
+
"num_hidden_layers": 64,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"rms_norm_eps": 1e-06,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 1000000.0,
|
25 |
+
"sliding_window": null,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.45.2",
|
29 |
+
"use_cache": false,
|
30 |
+
"use_sliding_window": false,
|
31 |
+
"vocab_size": 152064
|
32 |
+
}
|
configuration_qwenLitTrans.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 LightTransfer team and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
# This code is based on src/transformers/models/qwen2/configuration_qwen2.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""Qwen2LitTrans model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class Qwen2LitTransConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`Qwen2LitTransModel`]. It is used to instantiate a
|
29 |
+
Qwen2LitTrans model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
30 |
+
with the defaults will yield a similar configuration to that of
|
31 |
+
Qwen2LitTrans-7B-beta [Qwen/Qwen2LitTrans-7B-beta](https://huggingface.co/Qwen/Qwen2LitTrans-7B-beta).
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
39 |
+
Vocabulary size of the Qwen2LitTrans model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`Qwen2LitTransModel`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
59 |
+
The maximum sequence length that this model might ever be used with.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether the model's input and output word embeddings should be tied.
|
69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
70 |
+
The base period of the RoPE embeddings.
|
71 |
+
rope_scaling (`Dict`, *optional*):
|
72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
73 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
74 |
+
accordingly.
|
75 |
+
Expected contents:
|
76 |
+
`rope_type` (`str`):
|
77 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
78 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
79 |
+
`factor` (`float`, *optional*):
|
80 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
81 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
82 |
+
original maximum pre-trained length.
|
83 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
84 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
85 |
+
pretraining.
|
86 |
+
`attention_factor` (`float`, *optional*):
|
87 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
88 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
89 |
+
`factor` field to infer the suggested value.
|
90 |
+
`beta_fast` (`float`, *optional*):
|
91 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
92 |
+
ramp function. If unspecified, it defaults to 32.
|
93 |
+
`beta_slow` (`float`, *optional*):
|
94 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
95 |
+
ramp function. If unspecified, it defaults to 1.
|
96 |
+
`short_factor` (`List[float]`, *optional*):
|
97 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
98 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
99 |
+
size divided by the number of attention heads divided by 2
|
100 |
+
`long_factor` (`List[float]`, *optional*):
|
101 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
102 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
103 |
+
size divided by the number of attention heads divided by 2
|
104 |
+
`low_freq_factor` (`float`, *optional*):
|
105 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
106 |
+
`high_freq_factor` (`float`, *optional*):
|
107 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
108 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use sliding window attention.
|
110 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
111 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
112 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
113 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
114 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
115 |
+
The dropout ratio for the attention probabilities.
|
116 |
+
|
117 |
+
```python
|
118 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
119 |
+
|
120 |
+
>>> # Initializing a Qwen2 style configuration
|
121 |
+
>>> configuration = Qwen2Config()
|
122 |
+
|
123 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
124 |
+
>>> model = Qwen2Model(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```"""
|
129 |
+
|
130 |
+
model_type = "qwen2littrans"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
# Default tensor parallel plan for base model `Qwen2LitTrans`
|
134 |
+
base_model_tp_plan = {
|
135 |
+
"layers.*.self_attn.q_proj": "colwise",
|
136 |
+
"layers.*.self_attn.k_proj": "colwise",
|
137 |
+
"layers.*.self_attn.v_proj": "colwise",
|
138 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
139 |
+
"layers.*.mlp.gate_proj": "colwise",
|
140 |
+
"layers.*.mlp.up_proj": "colwise",
|
141 |
+
"layers.*.mlp.down_proj": "rowwise",
|
142 |
+
}
|
143 |
+
base_model_pp_plan = {
|
144 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
145 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
146 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
147 |
+
}
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
vocab_size=151936,
|
152 |
+
hidden_size=4096,
|
153 |
+
intermediate_size=22016,
|
154 |
+
num_hidden_layers=32,
|
155 |
+
num_attention_heads=32,
|
156 |
+
num_key_value_heads=32,
|
157 |
+
hidden_act="silu",
|
158 |
+
max_position_embeddings=32768,
|
159 |
+
initializer_range=0.02,
|
160 |
+
rms_norm_eps=1e-6,
|
161 |
+
use_cache=True,
|
162 |
+
tie_word_embeddings=False,
|
163 |
+
rope_theta=10000.0,
|
164 |
+
rope_scaling=None,
|
165 |
+
use_sliding_window=False,
|
166 |
+
sliding_window=4096,
|
167 |
+
max_window_layers=28,
|
168 |
+
attention_dropout=0.0,
|
169 |
+
**kwargs,
|
170 |
+
):
|
171 |
+
self.vocab_size = vocab_size
|
172 |
+
self.max_position_embeddings = max_position_embeddings
|
173 |
+
self.hidden_size = hidden_size
|
174 |
+
self.intermediate_size = intermediate_size
|
175 |
+
self.num_hidden_layers = num_hidden_layers
|
176 |
+
self.num_attention_heads = num_attention_heads
|
177 |
+
self.use_sliding_window = use_sliding_window
|
178 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
179 |
+
self.max_window_layers = max_window_layers
|
180 |
+
|
181 |
+
# for backward compatibility
|
182 |
+
if num_key_value_heads is None:
|
183 |
+
num_key_value_heads = num_attention_heads
|
184 |
+
|
185 |
+
self.num_key_value_heads = num_key_value_heads
|
186 |
+
self.hidden_act = hidden_act
|
187 |
+
self.initializer_range = initializer_range
|
188 |
+
self.rms_norm_eps = rms_norm_eps
|
189 |
+
self.use_cache = use_cache
|
190 |
+
self.rope_theta = rope_theta
|
191 |
+
self.rope_scaling = rope_scaling
|
192 |
+
self.attention_dropout = attention_dropout
|
193 |
+
# Validate the correctness of rotary position embeddings parameters
|
194 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
195 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
196 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
197 |
+
rope_config_validation(self)
|
198 |
+
|
199 |
+
super().__init__(
|
200 |
+
tie_word_embeddings=tie_word_embeddings,
|
201 |
+
**kwargs,
|
202 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.45.2"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a55f70120e5f2ae424db49a5068a8d533aff4f7c8a8e56fd5a4d7c3f8d538a8c
|
3 |
+
size 4891730992
|
model-00002-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dc7d05702d9a5ddaae74360bc38d2e722d63103969acdb5ea2ded785f19abc2
|
3 |
+
size 4876059352
|
model-00003-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837209ae6a1cf317a127bc3e1ceb6e041bd5812bc075773862f93b4a1e08ef7f
|
3 |
+
size 4876059384
|
model-00004-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46c7643267373290cf2818a2e3ea2f1fafc7b45608db8c6abaabac417f7c7e77
|
3 |
+
size 4876059416
|
model-00005-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:928be54572476ae801847fb4d983cb0385144d9ce5b98b8d86fe39c58c797a76
|
3 |
+
size 4876059416
|
model-00006-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33c92c21b78a6dfe56b4c309279d2c8d46f4f6363cc6a566c0fe4cb97c4100d4
|
3 |
+
size 4876059416
|
model-00007-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19497bcc7246a1698c903dc637744aba1345f7a74929945dac05291e0d935ea1
|
3 |
+
size 4876059416
|
model-00008-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef622473c5d2d8b155437b0c9cb586fdf9de6daaf8f96d1a148b79cd8fb87f22
|
3 |
+
size 4876059416
|
model-00009-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:247a33c0c59972498c0053e8177d93d14cbf97be0eb682843bf7e3790292e6bc
|
3 |
+
size 4876059416
|
model-00010-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd3642e24b7ac7f797bacdc369f980200b5d0cf6db497cba040cbf4a9715800
|
3 |
+
size 4876059416
|
model-00011-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a84d4a356350b9b86b37269670dcdb53695e3d43c8f5e93046737b656031475c
|
3 |
+
size 4876059416
|
model-00012-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:333d0372227f98f4e46f901468a0550aa5bb1c53ac72dcb5c0fe99920ecc7c16
|
3 |
+
size 4876059416
|
model-00013-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0321d816003337a19bd5f6456dcc2cce5be1a7de3ec1b1fd1c22e197b583519
|
3 |
+
size 4876059416
|
model-00014-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f92589fcc3d373e54523e4a708b78576c9f933acf4c7c8b3e826ba3af1f3b5ce
|
3 |
+
size 2123397800
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 65527752704
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00014-of-00014.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00014.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
524 |
+
"model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
525 |
+
"model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
526 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
527 |
+
"model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
528 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
529 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
530 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
531 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
532 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
533 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
534 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
535 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
536 |
+
"model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
537 |
+
"model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
538 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
539 |
+
"model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
540 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
541 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
542 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
543 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
544 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
545 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
546 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
547 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
548 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
549 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
550 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
551 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
552 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
553 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
554 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
555 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
556 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
557 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
558 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
559 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
560 |
+
"model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
561 |
+
"model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
562 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
563 |
+
"model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
564 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
565 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
566 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
567 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
568 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
569 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
570 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
571 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
572 |
+
"model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
573 |
+
"model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
574 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
575 |
+
"model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
576 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
577 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
578 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
579 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
580 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
581 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
582 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
583 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
584 |
+
"model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
585 |
+
"model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
586 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
587 |
+
"model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
588 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
589 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
590 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
591 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
592 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
593 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
594 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
595 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
596 |
+
"model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
597 |
+
"model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
598 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
599 |
+
"model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
600 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
601 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
602 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
603 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
604 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
605 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
606 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
607 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
608 |
+
"model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
609 |
+
"model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
610 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
611 |
+
"model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
612 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
613 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
614 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
615 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
616 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
617 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
618 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
619 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
620 |
+
"model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
621 |
+
"model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
622 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
623 |
+
"model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
624 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
625 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
626 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
627 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
628 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
629 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
630 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
631 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
632 |
+
"model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
633 |
+
"model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
634 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
635 |
+
"model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
636 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
637 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
638 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
639 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
640 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
641 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
642 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
643 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
644 |
+
"model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
645 |
+
"model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
646 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
647 |
+
"model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
648 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
649 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
650 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
651 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
652 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
653 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
654 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
655 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
656 |
+
"model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
657 |
+
"model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
658 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
659 |
+
"model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
660 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
661 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
662 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
663 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
664 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
665 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
666 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
667 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
668 |
+
"model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
669 |
+
"model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
670 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
671 |
+
"model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
672 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
673 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
674 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
675 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
676 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
677 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
678 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
679 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
680 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
681 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
682 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
683 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
684 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
685 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
686 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
687 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
688 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
689 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
690 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
691 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
692 |
+
"model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
693 |
+
"model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
694 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
695 |
+
"model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
696 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
697 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
698 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
699 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
700 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
701 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
702 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
703 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
704 |
+
"model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
705 |
+
"model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
706 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
707 |
+
"model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
708 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
709 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
710 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
711 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
712 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
713 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
714 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
715 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
716 |
+
"model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
717 |
+
"model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
718 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
719 |
+
"model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
720 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
721 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
722 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
723 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
724 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
725 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
726 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
727 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
728 |
+
"model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
729 |
+
"model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
730 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
731 |
+
"model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
732 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
733 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
734 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
735 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
736 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
737 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
738 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
739 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
740 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
741 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
742 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
743 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
744 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
745 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
746 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
747 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
748 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
749 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
750 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
751 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
752 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
753 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
754 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
755 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
756 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
757 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
758 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
759 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
760 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
761 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
762 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
763 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
764 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
765 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
766 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
767 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
768 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
769 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
770 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
771 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
772 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
773 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
774 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
775 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
776 |
+
"model.norm.weight": "model-00014-of-00014.safetensors"
|
777 |
+
}
|
778 |
+
}
|
modeling_qwenLitTrans.py
ADDED
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
#
|
3 |
+
# Copyright 2025 LightTransfer team and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on transformers/src/transformers/models/qwen2/modeling_qwen2.py
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
"""PyTorch Qwen2LitTrans model."""
|
19 |
+
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import os
|
22 |
+
|
23 |
+
import math
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
torch.set_printoptions(precision=2)
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from functools import partial
|
33 |
+
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
36 |
+
from transformers.generation import GenerationMixin
|
37 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
TokenClassifierOutput,
|
43 |
+
)
|
44 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
45 |
+
from transformers.modeling_utils import PreTrainedModel
|
46 |
+
from transformers.utils import (
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
is_flash_attn_2_available,
|
50 |
+
is_flash_attn_greater_or_equal_2_10,
|
51 |
+
is_torchdynamo_compiling,
|
52 |
+
logging,
|
53 |
+
replace_return_docstrings,
|
54 |
+
)
|
55 |
+
from .configuration_qwenLitTrans import Qwen2LitTransConfig
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_with_kvcache
|
57 |
+
|
58 |
+
if is_flash_attn_2_available():
|
59 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
60 |
+
|
61 |
+
# from torch.nn.attention.flex_attention import flex_attention
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
67 |
+
_CONFIG_FOR_DOC = "Qwen2LitTransConfig"
|
68 |
+
|
69 |
+
def torch_tree_attention(q, k_cache, v_cache, k, v, kv_seqlen=None, tree_mask=None):
|
70 |
+
bsz, num_kv_heads, kv_len, head_dim = k.size()
|
71 |
+
kv_groups = q.size(1) // num_kv_heads
|
72 |
+
|
73 |
+
insert_indices = kv_seqlen.unsqueeze(-1) + torch.arange(kv_len, device=kv_seqlen.device).unsqueeze(0)
|
74 |
+
insert_indices = insert_indices[:, None, :, None].expand(-1, num_kv_heads, -1, head_dim)
|
75 |
+
|
76 |
+
k_cache.scatter_(2, insert_indices, k)
|
77 |
+
v_cache.scatter_(2, insert_indices, v)
|
78 |
+
|
79 |
+
# NOTE must after the scater!
|
80 |
+
cur_kv_seqlen = kv_seqlen + k.size(2)
|
81 |
+
|
82 |
+
max_len = cur_kv_seqlen.max().item() #, k_cache.size(2))
|
83 |
+
|
84 |
+
k, v = k_cache[:, :, :max_len], v_cache[:, :, :max_len]
|
85 |
+
seqlen_mask = torch.arange(max_len, device=k.device) >= cur_kv_seqlen.unsqueeze(-1) # [B, S]
|
86 |
+
seqlen_mask = seqlen_mask.unsqueeze(1)
|
87 |
+
|
88 |
+
|
89 |
+
if kv_groups > 1:
|
90 |
+
k = k.unsqueeze(2).expand(-1, -1, kv_groups, -1, -1).reshape(bsz, num_kv_heads * kv_groups, max_len, head_dim)
|
91 |
+
v = v.unsqueeze(2).expand(-1, -1, kv_groups, -1, -1).reshape(bsz, num_kv_heads * kv_groups, max_len, head_dim)
|
92 |
+
|
93 |
+
|
94 |
+
out = torch.nn.functional.scaled_dot_product_attention(
|
95 |
+
q,
|
96 |
+
k[:, :, :max_len],
|
97 |
+
v[:, :, :max_len],
|
98 |
+
attn_mask=None,
|
99 |
+
dropout_p=0.0,
|
100 |
+
is_causal=True,
|
101 |
+
)
|
102 |
+
|
103 |
+
return out.transpose(1, 2)
|
104 |
+
|
105 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2LitTrans
|
106 |
+
class Qwen2LitTransRMSNorm(nn.Module):
|
107 |
+
def __init__(self, hidden_size, eps=1e-6):
|
108 |
+
"""
|
109 |
+
Qwen2LitTransRMSNorm is equivalent to T5LayerNorm
|
110 |
+
"""
|
111 |
+
super().__init__()
|
112 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
113 |
+
self.variance_epsilon = eps
|
114 |
+
|
115 |
+
def forward(self, hidden_states):
|
116 |
+
input_dtype = hidden_states.dtype
|
117 |
+
hidden_states = hidden_states.to(torch.float32)
|
118 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
119 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
120 |
+
return self.weight * hidden_states.to(input_dtype)
|
121 |
+
|
122 |
+
def extra_repr(self):
|
123 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2LitTrans
|
127 |
+
class Qwen2LitTransRotaryEmbedding(nn.Module):
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
dim=None,
|
131 |
+
max_position_embeddings=2048,
|
132 |
+
base=10000,
|
133 |
+
device=None,
|
134 |
+
scaling_factor=1.0,
|
135 |
+
rope_type="default",
|
136 |
+
config: Optional[Qwen2LitTransConfig] = None,
|
137 |
+
):
|
138 |
+
super().__init__()
|
139 |
+
# TODO (joao): remove the `if` below, only used for BC
|
140 |
+
self.rope_kwargs = {}
|
141 |
+
if config is None:
|
142 |
+
logger.warning_once(
|
143 |
+
"`Qwen2LitTransRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
144 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
145 |
+
)
|
146 |
+
self.rope_kwargs = {
|
147 |
+
"rope_type": rope_type,
|
148 |
+
"factor": scaling_factor,
|
149 |
+
"dim": dim,
|
150 |
+
"base": base,
|
151 |
+
"max_position_embeddings": max_position_embeddings,
|
152 |
+
}
|
153 |
+
self.rope_type = rope_type
|
154 |
+
self.max_seq_len_cached = max_position_embeddings
|
155 |
+
self.original_max_seq_len = max_position_embeddings
|
156 |
+
else:
|
157 |
+
# BC: "rope_type" was originally "type"
|
158 |
+
# if config.rope_scaling is not None:
|
159 |
+
# self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
160 |
+
# else:
|
161 |
+
self.rope_type = "default"
|
162 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
163 |
+
self.original_max_seq_len = config.max_position_embeddings
|
164 |
+
|
165 |
+
self.config = config
|
166 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
167 |
+
|
168 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
169 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
170 |
+
self.original_inv_freq = self.inv_freq
|
171 |
+
|
172 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
173 |
+
"""
|
174 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
175 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
176 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
177 |
+
"""
|
178 |
+
seq_len = torch.max(position_ids) + 1
|
179 |
+
if seq_len > self.max_seq_len_cached: # growth
|
180 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
181 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
182 |
+
)
|
183 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
184 |
+
self.max_seq_len_cached = seq_len
|
185 |
+
|
186 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
187 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
188 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
189 |
+
|
190 |
+
@torch.no_grad()
|
191 |
+
def forward(self, x, position_ids):
|
192 |
+
if "dynamic" in self.rope_type:
|
193 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
194 |
+
|
195 |
+
# Core RoPE block
|
196 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
197 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
198 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
199 |
+
device_type = x.device.type
|
200 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
201 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
202 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
203 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
204 |
+
cos = emb.cos()
|
205 |
+
sin = emb.sin()
|
206 |
+
|
207 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
208 |
+
cos = cos * self.attention_scaling
|
209 |
+
sin = sin * self.attention_scaling
|
210 |
+
|
211 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
212 |
+
|
213 |
+
|
214 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
215 |
+
def rotate_half(x):
|
216 |
+
"""Rotates half the hidden dims of the input."""
|
217 |
+
x1 = x[..., : x.shape[-1] // 2]
|
218 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
219 |
+
return torch.cat((-x2, x1), dim=-1)
|
220 |
+
|
221 |
+
|
222 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
223 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
224 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
q (`torch.Tensor`): The query tensor.
|
228 |
+
k (`torch.Tensor`): The key tensor.
|
229 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
230 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
231 |
+
position_ids (`torch.Tensor`, *optional*):
|
232 |
+
Deprecated and unused.
|
233 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
234 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
235 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
236 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
237 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
238 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
239 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
240 |
+
Returns:
|
241 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
242 |
+
"""
|
243 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
244 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
245 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
246 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
247 |
+
return q_embed, k_embed
|
248 |
+
|
249 |
+
|
250 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2LitTrans
|
251 |
+
class Qwen2LitTransMLP(nn.Module):
|
252 |
+
def __init__(self, config):
|
253 |
+
super().__init__()
|
254 |
+
self.hidden_size = config.hidden_size
|
255 |
+
self.intermediate_size = config.intermediate_size
|
256 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
257 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
258 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
259 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
260 |
+
|
261 |
+
def forward(self, hidden_state):
|
262 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
263 |
+
|
264 |
+
|
265 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
266 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
267 |
+
"""
|
268 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
269 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
270 |
+
"""
|
271 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
272 |
+
if n_rep == 1:
|
273 |
+
return hidden_states
|
274 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
275 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
276 |
+
|
277 |
+
|
278 |
+
class Qwen2LitTransAttention(nn.Module):
|
279 |
+
"""
|
280 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
281 |
+
and "Generating Long Sequences with Sparse Transformers".
|
282 |
+
"""
|
283 |
+
|
284 |
+
def __init__(self, config: Qwen2LitTransConfig, layer_idx: Optional[int] = None):
|
285 |
+
super().__init__()
|
286 |
+
self.config = config
|
287 |
+
self.layer_idx = layer_idx
|
288 |
+
if layer_idx is None:
|
289 |
+
logger.warning_once(
|
290 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
291 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
292 |
+
"when creating this class."
|
293 |
+
)
|
294 |
+
|
295 |
+
self.hidden_size = config.hidden_size
|
296 |
+
self.num_heads = config.num_attention_heads
|
297 |
+
self.head_dim = self.hidden_size // self.num_heads
|
298 |
+
self.num_key_value_heads = config.num_key_value_heads
|
299 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
300 |
+
self.max_position_embeddings = config.max_position_embeddings
|
301 |
+
self.rope_theta = config.rope_theta
|
302 |
+
self.is_causal = True
|
303 |
+
self.attention_dropout = config.attention_dropout
|
304 |
+
|
305 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
306 |
+
raise ValueError(
|
307 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
308 |
+
f" and `num_heads`: {self.num_heads})."
|
309 |
+
)
|
310 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
311 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
312 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
313 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
314 |
+
|
315 |
+
self.rotary_emb = Qwen2LitTransRotaryEmbedding(config=self.config)
|
316 |
+
self.K_Cache = None
|
317 |
+
self.V_Cache = None
|
318 |
+
self.answer_K_Cache = None
|
319 |
+
self.answer_V_Cache = None
|
320 |
+
self.max_len = 2048
|
321 |
+
self.log_ratio = math.log(0.7)
|
322 |
+
self.prefix_lens = None
|
323 |
+
self.layer_idx = layer_idx
|
324 |
+
self.last_layer = (config.num_hidden_layers == self.layer_idx + 1)
|
325 |
+
self.softmax_scale = 1 / (128 ** 0.5)
|
326 |
+
self.range_indices = None
|
327 |
+
self.sink_len = 128
|
328 |
+
self.kv_len = 2048
|
329 |
+
self.lazy_ratio = None
|
330 |
+
self.lazy_cnt = 0
|
331 |
+
self.key_importance = None
|
332 |
+
self.fa_cache_lens = None
|
333 |
+
self.print_flag = True
|
334 |
+
self.lazy_list = [38, 51, 35, 26, 23, 43, 37, 24, 21, 28, 30, 22, 32, 33, 13, 20, 31, 27, 18, 9, 15, 19, 16, 17, 12, 8, 6, 10, 7, 5, 11, 14]
|
335 |
+
# self.lazy_list =[31, 27, 18, 9, 15, 19, 16, 17, 12, 8, 6, 10, 7, 5, 11, 14]
|
336 |
+
# self.lazy_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
|
337 |
+
# self.lazy_list = [-1]
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
hidden_states,
|
341 |
+
position_embeddings,
|
342 |
+
cache_lens=None,
|
343 |
+
flex_attn=None,
|
344 |
+
tree_mask=None,
|
345 |
+
exec_type="training",
|
346 |
+
vis_lens=None,
|
347 |
+
sample_id=None,
|
348 |
+
):
|
349 |
+
|
350 |
+
kv_cache = None
|
351 |
+
torch.cuda.empty_cache()
|
352 |
+
if exec_type == "prefill":
|
353 |
+
# print(self.layer_idx)
|
354 |
+
y = self.prefill(hidden_states, position_embeddings)
|
355 |
+
torch.cuda.empty_cache()
|
356 |
+
elif exec_type == "decoding":
|
357 |
+
# print(self.layer_idx)
|
358 |
+
if self.layer_idx in self.lazy_list:
|
359 |
+
y = self.streaming_decoding(hidden_states, position_embeddings, cache_lens)
|
360 |
+
else:
|
361 |
+
y = self.decoding(hidden_states, position_embeddings, cache_lens)
|
362 |
+
else:
|
363 |
+
raise ValueError(f"Unknown inference_type: {exec_type}")
|
364 |
+
return y, kv_cache
|
365 |
+
|
366 |
+
def prefill(
|
367 |
+
self,
|
368 |
+
hidden_states,
|
369 |
+
position_embeddings,
|
370 |
+
):
|
371 |
+
|
372 |
+
bsz, q_len, _ = hidden_states.size()
|
373 |
+
query_states = self.q_proj(hidden_states)
|
374 |
+
key_states = self.k_proj(hidden_states)
|
375 |
+
value_states = self.v_proj(hidden_states)
|
376 |
+
|
377 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
|
378 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
379 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
380 |
+
|
381 |
+
cos, sin = position_embeddings
|
382 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
|
383 |
+
|
384 |
+
|
385 |
+
# print(attn_output.shape)
|
386 |
+
if self.layer_idx in self.lazy_list:
|
387 |
+
self.K_Cache = query_states.new_zeros((bsz, 1024+128, self.num_key_value_heads, self.head_dim))
|
388 |
+
self.V_Cache = query_states.new_zeros((bsz, 1024+128, self.num_key_value_heads, self.head_dim))
|
389 |
+
else:
|
390 |
+
self.K_Cache = query_states.new_zeros((bsz, 32000, self.num_key_value_heads, self.head_dim))
|
391 |
+
self.V_Cache = query_states.new_zeros((bsz, 32000, self.num_key_value_heads, self.head_dim))
|
392 |
+
# print(self.K_Cache.size())
|
393 |
+
# print(self.K_Cache)
|
394 |
+
|
395 |
+
self.K_Cache[:, :q_len] = key_states
|
396 |
+
self.V_Cache[:, :q_len] = value_states
|
397 |
+
attn_output = flash_attn_func(query_states, key_states, value_states, causal=True)
|
398 |
+
self.range_indices = torch.arange(8192, device=self.K_Cache.device)
|
399 |
+
attn_output = self.o_proj(attn_output.view(bsz, q_len, -1))
|
400 |
+
self.lazy_cnt = 0
|
401 |
+
self.lazy_ratio = None
|
402 |
+
|
403 |
+
return attn_output
|
404 |
+
def decoding(
|
405 |
+
self,
|
406 |
+
hidden_states,
|
407 |
+
position_embeddings,
|
408 |
+
cache_lens,
|
409 |
+
):
|
410 |
+
|
411 |
+
bsz, q_len, _ = hidden_states.size()
|
412 |
+
query_states = self.q_proj(hidden_states)
|
413 |
+
key_states = self.k_proj(hidden_states)
|
414 |
+
value_states = self.v_proj(hidden_states)
|
415 |
+
|
416 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
|
417 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
418 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
419 |
+
|
420 |
+
cos, sin = position_embeddings
|
421 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
|
422 |
+
|
423 |
+
attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, key_states, value_states, causal=True, cache_seqlens=cache_lens)
|
424 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
425 |
+
attn_output = self.o_proj(attn_output)
|
426 |
+
|
427 |
+
return attn_output
|
428 |
+
def streaming_decoding(
|
429 |
+
self,
|
430 |
+
hidden_states,
|
431 |
+
position_embeddings,
|
432 |
+
cache_lens,
|
433 |
+
):
|
434 |
+
# if self.print_flag:
|
435 |
+
# print(True)
|
436 |
+
# print(self.layer_idx)
|
437 |
+
# self.print_flag = False
|
438 |
+
bsz, q_len, _ = hidden_states.size()
|
439 |
+
|
440 |
+
query_states = self.q_proj(hidden_states)
|
441 |
+
key_states = self.k_proj(hidden_states)
|
442 |
+
value_states = self.v_proj(hidden_states)
|
443 |
+
|
444 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
|
445 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
446 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
447 |
+
|
448 |
+
cos, sin = position_embeddings
|
449 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
|
450 |
+
if cache_lens < self.K_Cache.size(1):
|
451 |
+
attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, key_states, value_states, causal=True, cache_seqlens=cache_lens)
|
452 |
+
else:
|
453 |
+
remap_cache_len = (cache_lens % (self.K_Cache.size(1) - self.sink_len)) + self.sink_len - 1
|
454 |
+
self.K_Cache[self.range_indices[:bsz], remap_cache_len] = key_states
|
455 |
+
self.V_Cache[self.range_indices[:bsz], remap_cache_len] = value_states
|
456 |
+
attn_output = flash_attn_with_kvcache(query_states, self.K_Cache, self.V_Cache, causal=True, cache_seqlens=self.K_Cache.size(1))
|
457 |
+
# print(self.K_Cache.size(1))
|
458 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
459 |
+
attn_output = self.o_proj(attn_output)
|
460 |
+
|
461 |
+
return attn_output
|
462 |
+
|
463 |
+
Qwen2LitTrans_ATTENTION_CLASSES = {
|
464 |
+
"eager": Qwen2LitTransAttention,
|
465 |
+
"flash_attention_2": Qwen2LitTransAttention,
|
466 |
+
"sdpa": Qwen2LitTransAttention,
|
467 |
+
}
|
468 |
+
|
469 |
+
|
470 |
+
class Qwen2LitTransDecoderLayer(nn.Module):
|
471 |
+
def __init__(self, config: Qwen2LitTransConfig, layer_idx: int):
|
472 |
+
super().__init__()
|
473 |
+
self.hidden_size = config.hidden_size
|
474 |
+
self.layer_idx = layer_idx
|
475 |
+
self.last_layer = (config.num_hidden_layers == self.layer_idx + 1)
|
476 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
477 |
+
logger.warning_once(
|
478 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
479 |
+
"unexpected results may be encountered."
|
480 |
+
)
|
481 |
+
self.self_attn = Qwen2LitTrans_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
482 |
+
|
483 |
+
self.mlp = Qwen2LitTransMLP(config)
|
484 |
+
self.input_layernorm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
485 |
+
self.post_attention_layernorm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
hidden_states,
|
490 |
+
position_embeddings, # will become mandatory in v4.46
|
491 |
+
cache_lens=None,
|
492 |
+
flex_attn=None,
|
493 |
+
exec_type=None,
|
494 |
+
tree_mask=None,
|
495 |
+
vis_lens=None,
|
496 |
+
sample_id=None,
|
497 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
498 |
+
|
499 |
+
|
500 |
+
residual = hidden_states
|
501 |
+
|
502 |
+
hidden_states = self.input_layernorm(hidden_states)
|
503 |
+
|
504 |
+
# Self Attention
|
505 |
+
hidden_states, kv_cache = self.self_attn(
|
506 |
+
hidden_states=hidden_states,
|
507 |
+
position_embeddings=position_embeddings,
|
508 |
+
cache_lens=cache_lens,
|
509 |
+
flex_attn=flex_attn,
|
510 |
+
exec_type=exec_type,
|
511 |
+
tree_mask=tree_mask,
|
512 |
+
vis_lens=vis_lens,
|
513 |
+
sample_id=sample_id,
|
514 |
+
)
|
515 |
+
hidden_states = residual + hidden_states
|
516 |
+
|
517 |
+
# Fully Connected
|
518 |
+
residual = hidden_states
|
519 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
520 |
+
hidden_states = self.mlp(hidden_states)
|
521 |
+
hidden_states = residual + hidden_states
|
522 |
+
|
523 |
+
outputs = (hidden_states, kv_cache)
|
524 |
+
|
525 |
+
return outputs
|
526 |
+
|
527 |
+
class Qwen2LitTransPreTrainedModel(PreTrainedModel):
|
528 |
+
config_class = Qwen2LitTransConfig
|
529 |
+
base_model_prefix = "model"
|
530 |
+
supports_gradient_checkpointing = True
|
531 |
+
_no_split_modules = ["Qwen2LitTransDecoderLayer"]
|
532 |
+
_skip_keys_device_placement = "past_key_values"
|
533 |
+
_supports_flash_attn_2 = True
|
534 |
+
_supports_sdpa = True
|
535 |
+
_supports_cache_class = True
|
536 |
+
_supports_quantized_cache = True
|
537 |
+
_supports_static_cache = True
|
538 |
+
|
539 |
+
def _init_weights(self, module):
|
540 |
+
std = self.config.initializer_range
|
541 |
+
if isinstance(module, nn.Linear):
|
542 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
543 |
+
if module.bias is not None:
|
544 |
+
module.bias.data.zero_()
|
545 |
+
elif isinstance(module, nn.Embedding):
|
546 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
547 |
+
if module.padding_idx is not None:
|
548 |
+
module.weight.data[module.padding_idx].zero_()
|
549 |
+
|
550 |
+
class Qwen2LitTransModel(Qwen2LitTransPreTrainedModel):
|
551 |
+
"""
|
552 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2LitTransDecoderLayer`]
|
553 |
+
|
554 |
+
Args:
|
555 |
+
config: Qwen2LitTransConfig
|
556 |
+
"""
|
557 |
+
|
558 |
+
def __init__(self, config: Qwen2LitTransConfig):
|
559 |
+
super().__init__(config)
|
560 |
+
self.padding_idx = config.pad_token_id
|
561 |
+
self.vocab_size = config.vocab_size
|
562 |
+
|
563 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
564 |
+
self.layers = nn.ModuleList(
|
565 |
+
[Qwen2LitTransDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
566 |
+
)
|
567 |
+
self._attn_implementation = config._attn_implementation
|
568 |
+
self.norm = Qwen2LitTransRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
569 |
+
self.rotary_emb = Qwen2LitTransRotaryEmbedding(config=config)
|
570 |
+
|
571 |
+
self.gradient_checkpointing = False
|
572 |
+
# Initialize weights and apply final processing
|
573 |
+
self.post_init()
|
574 |
+
|
575 |
+
def get_input_embeddings(self):
|
576 |
+
return self.embed_tokens
|
577 |
+
|
578 |
+
def set_input_embeddings(self, value):
|
579 |
+
self.embed_tokens = value
|
580 |
+
|
581 |
+
|
582 |
+
def forward(
|
583 |
+
self,
|
584 |
+
input_ids,
|
585 |
+
position_ids=None,
|
586 |
+
inputs_embeds=None,
|
587 |
+
cache_lens=None,
|
588 |
+
flex_attn=None,
|
589 |
+
exec_type=None,
|
590 |
+
tree_mask=None,
|
591 |
+
vis_lens=None,
|
592 |
+
sample_id=None,
|
593 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
594 |
+
|
595 |
+
|
596 |
+
if position_ids is None:
|
597 |
+
position_ids = torch.arange(0, input_ids.size(1))[None, :].to(input_ids.device)
|
598 |
+
if cache_lens is not None:
|
599 |
+
# print(f"cache_lens: {cache_lens}")
|
600 |
+
# print(f"position_ids: {position_ids}")
|
601 |
+
if tree_mask is None:
|
602 |
+
position_ids = position_ids + cache_lens[:, None]
|
603 |
+
else:
|
604 |
+
position_ids = tree_mask.sum(dim=-1) - 1 + cache_lens[:, None]
|
605 |
+
|
606 |
+
if inputs_embeds is None:
|
607 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
608 |
+
|
609 |
+
|
610 |
+
hidden_states = inputs_embeds
|
611 |
+
|
612 |
+
# create position embeddings to be shared across the decoder layers
|
613 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
614 |
+
|
615 |
+
for decoder_layer in self.layers:
|
616 |
+
|
617 |
+
if self.gradient_checkpointing and self.training:
|
618 |
+
layer_outputs = self._gradient_checkpointing_func(
|
619 |
+
decoder_layer.__call__,
|
620 |
+
hidden_states,
|
621 |
+
position_embeddings,
|
622 |
+
cache_lens,
|
623 |
+
flex_attn,
|
624 |
+
exec_type,
|
625 |
+
tree_mask,
|
626 |
+
)
|
627 |
+
else:
|
628 |
+
layer_outputs = decoder_layer(
|
629 |
+
hidden_states,
|
630 |
+
position_embeddings,
|
631 |
+
cache_lens,
|
632 |
+
flex_attn,
|
633 |
+
exec_type,
|
634 |
+
tree_mask,
|
635 |
+
vis_lens,
|
636 |
+
sample_id,
|
637 |
+
)
|
638 |
+
|
639 |
+
hidden_states = layer_outputs[0]
|
640 |
+
|
641 |
+
hidden_states = self.norm(hidden_states)
|
642 |
+
|
643 |
+
if exec_type == "glide_training":
|
644 |
+
kv_cache = layer_outputs[1]
|
645 |
+
else:
|
646 |
+
kv_cache = None
|
647 |
+
# add hidden states from the last decoder layer
|
648 |
+
|
649 |
+
return BaseModelOutputWithPast(
|
650 |
+
last_hidden_state=hidden_states,
|
651 |
+
past_key_values=kv_cache,
|
652 |
+
hidden_states=None,
|
653 |
+
attentions=None,
|
654 |
+
)
|
655 |
+
|
656 |
+
|
657 |
+
class Qwen2LitTransForCausalLM(Qwen2LitTransPreTrainedModel, GenerationMixin):
|
658 |
+
_tied_weights_keys = ["lm_head.weight"]
|
659 |
+
|
660 |
+
def __init__(self, config):
|
661 |
+
super().__init__(config)
|
662 |
+
self.model = Qwen2LitTransModel(config)
|
663 |
+
self.vocab_size = config.vocab_size
|
664 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
665 |
+
self.eod = 151645
|
666 |
+
# Initialize weights and apply final processing
|
667 |
+
self.post_init()
|
668 |
+
|
669 |
+
def get_input_embeddings(self):
|
670 |
+
return self.model.embed_tokens
|
671 |
+
|
672 |
+
def set_input_embeddings(self, value):
|
673 |
+
self.model.embed_tokens = value
|
674 |
+
|
675 |
+
def set_max_gen_len(self, max_gen_len):
|
676 |
+
for layer in self.model.layers:
|
677 |
+
layer.self_attn.max_len = max_gen_len
|
678 |
+
|
679 |
+
def set_stream_len(self, sink_len, kv_len):
|
680 |
+
for layer in self.model.layers:
|
681 |
+
layer.self_attn.sink_len = sink_len
|
682 |
+
layer.self_attn.kv_len = kv_len
|
683 |
+
layer.self_attn.max_len = sink_len + kv_len
|
684 |
+
|
685 |
+
def set_log_ratio(self, log_ratio):
|
686 |
+
for layer in self.model.layers:
|
687 |
+
layer.self_attn.log_ratio = log_ratio
|
688 |
+
|
689 |
+
def get_output_embeddings(self):
|
690 |
+
return self.lm_head
|
691 |
+
|
692 |
+
def set_output_embeddings(self, new_embeddings):
|
693 |
+
self.lm_head = new_embeddings
|
694 |
+
|
695 |
+
def set_decoder(self, decoder):
|
696 |
+
self.model = decoder
|
697 |
+
|
698 |
+
def get_decoder(self):
|
699 |
+
return self.model
|
700 |
+
|
701 |
+
def forward(
|
702 |
+
self,
|
703 |
+
input_ids,
|
704 |
+
position_ids=None,
|
705 |
+
inputs_embeds=None,
|
706 |
+
labels=None,
|
707 |
+
cache_lens=None,
|
708 |
+
exec_type="training",
|
709 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
710 |
+
|
711 |
+
if exec_type == "free_training":
|
712 |
+
|
713 |
+
bsz, seqlen = position_ids.size()
|
714 |
+
eod_mask = position_ids.eq(self.eod)
|
715 |
+
eod_indices = torch.nonzero(eod_mask, as_tuple=False)
|
716 |
+
|
717 |
+
|
718 |
+
assert eod_indices.size(0) == bsz * self.sample_num, "dataset needs all batch samples have same output samples equasl to self.sample_num"
|
719 |
+
|
720 |
+
eod_col = eod_indices[:, 1].view(bsz, 10)
|
721 |
+
prefix_end, doc_end = eod_col[:, 0], eod_col[:, 1:]
|
722 |
+
# block_mask = construct_doc_mask(bsz, prefix_end, doc_end, seqlen)
|
723 |
+
# block_mask = create_block_mask(construct_doc_mask, B=None, H=None, Q_LEN=8192, KV_LEN=8192, _compile=True)
|
724 |
+
# flex_attn = torch.compile(partial(flex_attention, block_mask=block_mask, enable_gqa=True))
|
725 |
+
flex_attn = None
|
726 |
+
else:
|
727 |
+
flex_attn = None
|
728 |
+
|
729 |
+
outputs = self.model(
|
730 |
+
input_ids=input_ids,
|
731 |
+
position_ids=position_ids,
|
732 |
+
inputs_embeds=inputs_embeds,
|
733 |
+
cache_lens=cache_lens,
|
734 |
+
flex_attn=flex_attn,
|
735 |
+
exec_type=exec_type,
|
736 |
+
)
|
737 |
+
|
738 |
+
hidden_states = outputs[0]
|
739 |
+
last_kv = outputs[1]
|
740 |
+
|
741 |
+
loss = None
|
742 |
+
if labels is not None:
|
743 |
+
from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
|
744 |
+
loss_fn = LigerFusedLinearCrossEntropyLoss()
|
745 |
+
hidden_dim = hidden_states.size(-1)
|
746 |
+
loss = loss_fn(self.lm_head.weight, hidden_states[:, 1:].reshape(-1, hidden_dim), labels[:, :-1].view(-1))
|
747 |
+
else:
|
748 |
+
logits = self.lm_head(hidden_states[:, -128:, :]).float()
|
749 |
+
|
750 |
+
return CausalLMOutputWithPast(
|
751 |
+
loss=loss,
|
752 |
+
logits=logits,
|
753 |
+
past_key_values=last_kv,
|
754 |
+
hidden_states=None,
|
755 |
+
attentions=None,
|
756 |
+
)
|
757 |
+
|
758 |
+
def attn_vis(self, input_ids, padding_id=151645, sample_idx=0):
|
759 |
+
assert input_ids.size(0) == 1, "only support batch_size=1"
|
760 |
+
save_dir = "vis/sample_id"
|
761 |
+
os.makedirs(save_dir, exist_ok=True)
|
762 |
+
vis_lens = input_ids.eq(padding_id).sum()
|
763 |
+
outputs = self.model(
|
764 |
+
input_ids=input_ids,
|
765 |
+
cache_lens=None,
|
766 |
+
flex_attn=None,
|
767 |
+
exec_type="attn_vis",
|
768 |
+
vis_lens=vis_lens,
|
769 |
+
sample_id=sample_idx,
|
770 |
+
)
|
771 |
+
|
772 |
+
|
773 |
+
def generate(self, input_ids, max_gen_len=32000, pad_id=151643, eos_id=151645):
|
774 |
+
assert input_ids != None, "please give the input"
|
775 |
+
bsz = input_ids.size(0)
|
776 |
+
output_ids = input_ids.new_zeros((bsz, max_gen_len)).fill_(pad_id)
|
777 |
+
|
778 |
+
self.set_max_gen_len(max_gen_len)
|
779 |
+
|
780 |
+
cache_lens = input_ids.new_zeros((bsz)).int()
|
781 |
+
hidden_states = self.model.forward(input_ids, exec_type="prefill").last_hidden_state
|
782 |
+
input_len = input_ids.ne(pad_id).sum(dim=-1)
|
783 |
+
output_ids[:, 0] = self.lm_head(hidden_states[range(bsz), input_len-1, :]).argmax(dim=-1)
|
784 |
+
cache_lens += input_len
|
785 |
+
for step in range(1, max_gen_len):
|
786 |
+
if step % 128 == 1:
|
787 |
+
print(f"current we are decoding {step}-st token")
|
788 |
+
input_ids = output_ids[range(bsz), cache_lens - input_len].view(bsz, -1)
|
789 |
+
hidden_states = self.model.forward(input_ids, cache_lens=cache_lens.clone(), exec_type="decoding").last_hidden_state
|
790 |
+
llm_output = self.lm_head(hidden_states[:, -1, :]).argmax(dim=-1)
|
791 |
+
cache_lens += 1
|
792 |
+
output_ids[range(bsz), cache_lens - input_len] = llm_output.view(-1)
|
793 |
+
if (output_ids.eq(eos_id).any(dim=-1).all()):
|
794 |
+
mask = (output_ids == eos_id).int().cumsum(dim=1) >= 1
|
795 |
+
output_ids[mask] = pad_id
|
796 |
+
break
|
797 |
+
|
798 |
+
return output_ids
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "left",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.779220779220779,
|
5 |
+
"eval_steps": 100000,
|
6 |
+
"global_step": 368,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.012987012987012988,
|
13 |
+
"grad_norm": 2.8171603240352896,
|
14 |
+
"learning_rate": 1e-05,
|
15 |
+
"loss": 0.5466,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.025974025974025976,
|
20 |
+
"grad_norm": 2.8001921525321785,
|
21 |
+
"learning_rate": 9.973958333333335e-06,
|
22 |
+
"loss": 0.547,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03896103896103896,
|
27 |
+
"grad_norm": 1.5392157012941012,
|
28 |
+
"learning_rate": 9.947916666666667e-06,
|
29 |
+
"loss": 0.459,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.05194805194805195,
|
34 |
+
"grad_norm": 1.1573857414234903,
|
35 |
+
"learning_rate": 9.921875e-06,
|
36 |
+
"loss": 0.4574,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.06493506493506493,
|
41 |
+
"grad_norm": 0.8995358249149084,
|
42 |
+
"learning_rate": 9.895833333333334e-06,
|
43 |
+
"loss": 0.421,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.07792207792207792,
|
48 |
+
"grad_norm": 0.9904798146163455,
|
49 |
+
"learning_rate": 9.869791666666667e-06,
|
50 |
+
"loss": 0.3695,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.09090909090909091,
|
55 |
+
"grad_norm": 0.9283957441209373,
|
56 |
+
"learning_rate": 9.84375e-06,
|
57 |
+
"loss": 0.3627,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.1038961038961039,
|
62 |
+
"grad_norm": 0.7771365268975639,
|
63 |
+
"learning_rate": 9.817708333333334e-06,
|
64 |
+
"loss": 0.3576,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.11688311688311688,
|
69 |
+
"grad_norm": 0.8022346587811421,
|
70 |
+
"learning_rate": 9.791666666666666e-06,
|
71 |
+
"loss": 0.3191,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.12987012987012986,
|
76 |
+
"grad_norm": 0.819398725227865,
|
77 |
+
"learning_rate": 9.765625e-06,
|
78 |
+
"loss": 0.3287,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.14285714285714285,
|
83 |
+
"grad_norm": 0.6805869638028169,
|
84 |
+
"learning_rate": 9.739583333333334e-06,
|
85 |
+
"loss": 0.3184,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.15584415584415584,
|
90 |
+
"grad_norm": 0.5977289690207203,
|
91 |
+
"learning_rate": 9.713541666666668e-06,
|
92 |
+
"loss": 0.3123,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.16883116883116883,
|
97 |
+
"grad_norm": 0.6566097354029716,
|
98 |
+
"learning_rate": 9.6875e-06,
|
99 |
+
"loss": 0.3023,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.18181818181818182,
|
104 |
+
"grad_norm": 0.6239198357102247,
|
105 |
+
"learning_rate": 9.661458333333334e-06,
|
106 |
+
"loss": 0.2982,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.19480519480519481,
|
111 |
+
"grad_norm": 0.5689846226409981,
|
112 |
+
"learning_rate": 9.635416666666668e-06,
|
113 |
+
"loss": 0.3,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.2077922077922078,
|
118 |
+
"grad_norm": 0.5003921754161651,
|
119 |
+
"learning_rate": 9.609375000000001e-06,
|
120 |
+
"loss": 0.2806,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.22077922077922077,
|
125 |
+
"grad_norm": 0.4669430776472446,
|
126 |
+
"learning_rate": 9.583333333333335e-06,
|
127 |
+
"loss": 0.2712,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.23376623376623376,
|
132 |
+
"grad_norm": 0.4464962776593643,
|
133 |
+
"learning_rate": 9.557291666666667e-06,
|
134 |
+
"loss": 0.2649,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.24675324675324675,
|
139 |
+
"grad_norm": 0.4429858692736543,
|
140 |
+
"learning_rate": 9.531250000000001e-06,
|
141 |
+
"loss": 0.2709,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.2597402597402597,
|
146 |
+
"grad_norm": 0.4534349349480874,
|
147 |
+
"learning_rate": 9.505208333333335e-06,
|
148 |
+
"loss": 0.2659,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.2727272727272727,
|
153 |
+
"grad_norm": 0.45604692611068276,
|
154 |
+
"learning_rate": 9.479166666666667e-06,
|
155 |
+
"loss": 0.274,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.2857142857142857,
|
160 |
+
"grad_norm": 0.42386666170861903,
|
161 |
+
"learning_rate": 9.453125000000001e-06,
|
162 |
+
"loss": 0.2432,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.2987012987012987,
|
167 |
+
"grad_norm": 0.4539418581699697,
|
168 |
+
"learning_rate": 9.427083333333335e-06,
|
169 |
+
"loss": 0.2479,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.3116883116883117,
|
174 |
+
"grad_norm": 0.36873765590858,
|
175 |
+
"learning_rate": 9.401041666666667e-06,
|
176 |
+
"loss": 0.2533,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.3246753246753247,
|
181 |
+
"grad_norm": 0.3597660839493326,
|
182 |
+
"learning_rate": 9.375000000000001e-06,
|
183 |
+
"loss": 0.2427,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.33766233766233766,
|
188 |
+
"grad_norm": 0.43380755500127693,
|
189 |
+
"learning_rate": 9.348958333333335e-06,
|
190 |
+
"loss": 0.2629,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.35064935064935066,
|
195 |
+
"grad_norm": 0.4124812851086015,
|
196 |
+
"learning_rate": 9.322916666666667e-06,
|
197 |
+
"loss": 0.2555,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.36363636363636365,
|
202 |
+
"grad_norm": 0.3899208758432942,
|
203 |
+
"learning_rate": 9.296875e-06,
|
204 |
+
"loss": 0.2385,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.37662337662337664,
|
209 |
+
"grad_norm": 0.4307637034312358,
|
210 |
+
"learning_rate": 9.270833333333334e-06,
|
211 |
+
"loss": 0.2676,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.38961038961038963,
|
216 |
+
"grad_norm": 0.381920816609879,
|
217 |
+
"learning_rate": 9.244791666666667e-06,
|
218 |
+
"loss": 0.2366,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.4025974025974026,
|
223 |
+
"grad_norm": 0.3816394656089062,
|
224 |
+
"learning_rate": 9.21875e-06,
|
225 |
+
"loss": 0.2321,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.4155844155844156,
|
230 |
+
"grad_norm": 0.42534009456351374,
|
231 |
+
"learning_rate": 9.192708333333334e-06,
|
232 |
+
"loss": 0.265,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.42857142857142855,
|
237 |
+
"grad_norm": 0.37160388698301566,
|
238 |
+
"learning_rate": 9.166666666666666e-06,
|
239 |
+
"loss": 0.2373,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.44155844155844154,
|
244 |
+
"grad_norm": 0.3801489729504126,
|
245 |
+
"learning_rate": 9.140625e-06,
|
246 |
+
"loss": 0.2414,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.45454545454545453,
|
251 |
+
"grad_norm": 0.3913349306860418,
|
252 |
+
"learning_rate": 9.114583333333334e-06,
|
253 |
+
"loss": 0.2206,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.4675324675324675,
|
258 |
+
"grad_norm": 0.3943320977947317,
|
259 |
+
"learning_rate": 9.088541666666666e-06,
|
260 |
+
"loss": 0.223,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.4805194805194805,
|
265 |
+
"grad_norm": 0.3702281679651669,
|
266 |
+
"learning_rate": 9.0625e-06,
|
267 |
+
"loss": 0.2147,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.4935064935064935,
|
272 |
+
"grad_norm": 0.422823856947034,
|
273 |
+
"learning_rate": 9.036458333333334e-06,
|
274 |
+
"loss": 0.2493,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.5064935064935064,
|
279 |
+
"grad_norm": 0.38040718111635613,
|
280 |
+
"learning_rate": 9.010416666666668e-06,
|
281 |
+
"loss": 0.2245,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.5194805194805194,
|
286 |
+
"grad_norm": 0.3440649156844092,
|
287 |
+
"learning_rate": 8.984375000000002e-06,
|
288 |
+
"loss": 0.2216,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.5324675324675324,
|
293 |
+
"grad_norm": 0.3646349376051012,
|
294 |
+
"learning_rate": 8.958333333333334e-06,
|
295 |
+
"loss": 0.2127,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5454545454545454,
|
300 |
+
"grad_norm": 0.34399756355860645,
|
301 |
+
"learning_rate": 8.932291666666668e-06,
|
302 |
+
"loss": 0.2148,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.5584415584415584,
|
307 |
+
"grad_norm": 0.3823461645884333,
|
308 |
+
"learning_rate": 8.906250000000001e-06,
|
309 |
+
"loss": 0.2367,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.5714285714285714,
|
314 |
+
"grad_norm": 0.3396475181827773,
|
315 |
+
"learning_rate": 8.880208333333335e-06,
|
316 |
+
"loss": 0.2097,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.5844155844155844,
|
321 |
+
"grad_norm": 0.40580965210317627,
|
322 |
+
"learning_rate": 8.854166666666667e-06,
|
323 |
+
"loss": 0.2539,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.5974025974025974,
|
328 |
+
"grad_norm": 0.3720924077531135,
|
329 |
+
"learning_rate": 8.828125000000001e-06,
|
330 |
+
"loss": 0.2416,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6103896103896104,
|
335 |
+
"grad_norm": 0.36386894867601904,
|
336 |
+
"learning_rate": 8.802083333333335e-06,
|
337 |
+
"loss": 0.2159,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6233766233766234,
|
342 |
+
"grad_norm": 0.39963494878899575,
|
343 |
+
"learning_rate": 8.776041666666667e-06,
|
344 |
+
"loss": 0.2155,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6363636363636364,
|
349 |
+
"grad_norm": 0.41491580966165253,
|
350 |
+
"learning_rate": 8.750000000000001e-06,
|
351 |
+
"loss": 0.2441,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6493506493506493,
|
356 |
+
"grad_norm": 0.413722874540919,
|
357 |
+
"learning_rate": 8.723958333333335e-06,
|
358 |
+
"loss": 0.2411,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6623376623376623,
|
363 |
+
"grad_norm": 0.3627710473819897,
|
364 |
+
"learning_rate": 8.697916666666667e-06,
|
365 |
+
"loss": 0.2032,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.6753246753246753,
|
370 |
+
"grad_norm": 0.37183990680520124,
|
371 |
+
"learning_rate": 8.671875e-06,
|
372 |
+
"loss": 0.2297,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.6883116883116883,
|
377 |
+
"grad_norm": 0.3447910113593886,
|
378 |
+
"learning_rate": 8.645833333333335e-06,
|
379 |
+
"loss": 0.2152,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.7012987012987013,
|
384 |
+
"grad_norm": 0.3746990091470779,
|
385 |
+
"learning_rate": 8.619791666666667e-06,
|
386 |
+
"loss": 0.2196,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.7142857142857143,
|
391 |
+
"grad_norm": 0.38360093812511664,
|
392 |
+
"learning_rate": 8.59375e-06,
|
393 |
+
"loss": 0.2351,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7272727272727273,
|
398 |
+
"grad_norm": 0.3401850780087419,
|
399 |
+
"learning_rate": 8.567708333333334e-06,
|
400 |
+
"loss": 0.1948,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.7402597402597403,
|
405 |
+
"grad_norm": 0.3341353144174157,
|
406 |
+
"learning_rate": 8.541666666666666e-06,
|
407 |
+
"loss": 0.1985,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.7532467532467533,
|
412 |
+
"grad_norm": 0.3317473111284822,
|
413 |
+
"learning_rate": 8.515625e-06,
|
414 |
+
"loss": 0.2019,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7662337662337663,
|
419 |
+
"grad_norm": 0.37322280586801393,
|
420 |
+
"learning_rate": 8.489583333333334e-06,
|
421 |
+
"loss": 0.2258,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.7792207792207793,
|
426 |
+
"grad_norm": 0.36560124214432044,
|
427 |
+
"learning_rate": 8.463541666666666e-06,
|
428 |
+
"loss": 0.2188,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.7922077922077922,
|
433 |
+
"grad_norm": 0.3372344746230244,
|
434 |
+
"learning_rate": 8.4375e-06,
|
435 |
+
"loss": 0.2157,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.8051948051948052,
|
440 |
+
"grad_norm": 0.3486634994045839,
|
441 |
+
"learning_rate": 8.411458333333334e-06,
|
442 |
+
"loss": 0.202,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.8181818181818182,
|
447 |
+
"grad_norm": 0.39190266385589323,
|
448 |
+
"learning_rate": 8.385416666666668e-06,
|
449 |
+
"loss": 0.2148,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.8311688311688312,
|
454 |
+
"grad_norm": 0.36845516731632094,
|
455 |
+
"learning_rate": 8.359375e-06,
|
456 |
+
"loss": 0.2184,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8441558441558441,
|
461 |
+
"grad_norm": 0.35457910296524253,
|
462 |
+
"learning_rate": 8.333333333333334e-06,
|
463 |
+
"loss": 0.2149,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8571428571428571,
|
468 |
+
"grad_norm": 0.3603241548710575,
|
469 |
+
"learning_rate": 8.307291666666668e-06,
|
470 |
+
"loss": 0.2155,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.8701298701298701,
|
475 |
+
"grad_norm": 0.36738480430355874,
|
476 |
+
"learning_rate": 8.281250000000001e-06,
|
477 |
+
"loss": 0.2262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8831168831168831,
|
482 |
+
"grad_norm": 0.3994418788798323,
|
483 |
+
"learning_rate": 8.255208333333335e-06,
|
484 |
+
"loss": 0.2237,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.8961038961038961,
|
489 |
+
"grad_norm": 0.3818265307209604,
|
490 |
+
"learning_rate": 8.229166666666667e-06,
|
491 |
+
"loss": 0.2134,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.9090909090909091,
|
496 |
+
"grad_norm": 0.3498820594838212,
|
497 |
+
"learning_rate": 8.203125000000001e-06,
|
498 |
+
"loss": 0.2069,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.922077922077922,
|
503 |
+
"grad_norm": 0.385917668930501,
|
504 |
+
"learning_rate": 8.177083333333335e-06,
|
505 |
+
"loss": 0.2123,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.935064935064935,
|
510 |
+
"grad_norm": 0.39236894265571665,
|
511 |
+
"learning_rate": 8.151041666666667e-06,
|
512 |
+
"loss": 0.2234,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.948051948051948,
|
517 |
+
"grad_norm": 0.3725234037920641,
|
518 |
+
"learning_rate": 8.125000000000001e-06,
|
519 |
+
"loss": 0.2066,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.961038961038961,
|
524 |
+
"grad_norm": 0.35880219297664784,
|
525 |
+
"learning_rate": 8.098958333333335e-06,
|
526 |
+
"loss": 0.1897,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.974025974025974,
|
531 |
+
"grad_norm": 0.3907765260625405,
|
532 |
+
"learning_rate": 8.072916666666667e-06,
|
533 |
+
"loss": 0.2294,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.987012987012987,
|
538 |
+
"grad_norm": 0.36488776593694006,
|
539 |
+
"learning_rate": 8.046875e-06,
|
540 |
+
"loss": 0.1958,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.0,
|
545 |
+
"grad_norm": 0.3787789187575852,
|
546 |
+
"learning_rate": 8.020833333333335e-06,
|
547 |
+
"loss": 0.2067,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.0129870129870129,
|
552 |
+
"grad_norm": 0.448465153413621,
|
553 |
+
"learning_rate": 7.994791666666667e-06,
|
554 |
+
"loss": 0.1244,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.025974025974026,
|
559 |
+
"grad_norm": 0.3915974513800719,
|
560 |
+
"learning_rate": 7.96875e-06,
|
561 |
+
"loss": 0.1243,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.0389610389610389,
|
566 |
+
"grad_norm": 0.3963769912247312,
|
567 |
+
"learning_rate": 7.942708333333334e-06,
|
568 |
+
"loss": 0.1172,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.051948051948052,
|
573 |
+
"grad_norm": 0.6014772610010978,
|
574 |
+
"learning_rate": 7.916666666666667e-06,
|
575 |
+
"loss": 0.1342,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.0649350649350648,
|
580 |
+
"grad_norm": 0.36513022825436714,
|
581 |
+
"learning_rate": 7.890625e-06,
|
582 |
+
"loss": 0.1155,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.077922077922078,
|
587 |
+
"grad_norm": 0.36495385435491967,
|
588 |
+
"learning_rate": 7.864583333333334e-06,
|
589 |
+
"loss": 0.1278,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.0909090909090908,
|
594 |
+
"grad_norm": 0.3817117188167101,
|
595 |
+
"learning_rate": 7.838541666666666e-06,
|
596 |
+
"loss": 0.1294,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.103896103896104,
|
601 |
+
"grad_norm": 0.3466875502600336,
|
602 |
+
"learning_rate": 7.8125e-06,
|
603 |
+
"loss": 0.1187,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.1168831168831168,
|
608 |
+
"grad_norm": 0.38224176701280815,
|
609 |
+
"learning_rate": 7.786458333333334e-06,
|
610 |
+
"loss": 0.1163,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.12987012987013,
|
615 |
+
"grad_norm": 0.387717741867272,
|
616 |
+
"learning_rate": 7.760416666666666e-06,
|
617 |
+
"loss": 0.1229,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.1428571428571428,
|
622 |
+
"grad_norm": 0.33922354465727605,
|
623 |
+
"learning_rate": 7.734375e-06,
|
624 |
+
"loss": 0.1026,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.155844155844156,
|
629 |
+
"grad_norm": 0.35409301762559464,
|
630 |
+
"learning_rate": 7.708333333333334e-06,
|
631 |
+
"loss": 0.1208,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.1688311688311688,
|
636 |
+
"grad_norm": 0.4114669310411066,
|
637 |
+
"learning_rate": 7.682291666666668e-06,
|
638 |
+
"loss": 0.138,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.1818181818181819,
|
643 |
+
"grad_norm": 0.3522471695287209,
|
644 |
+
"learning_rate": 7.656250000000001e-06,
|
645 |
+
"loss": 0.1268,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.1948051948051948,
|
650 |
+
"grad_norm": 0.3494758184949061,
|
651 |
+
"learning_rate": 7.630208333333334e-06,
|
652 |
+
"loss": 0.1118,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.2077922077922079,
|
657 |
+
"grad_norm": 0.35673580541279293,
|
658 |
+
"learning_rate": 7.6041666666666666e-06,
|
659 |
+
"loss": 0.111,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.2207792207792207,
|
664 |
+
"grad_norm": 0.2877699742066818,
|
665 |
+
"learning_rate": 7.578125e-06,
|
666 |
+
"loss": 0.1024,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.2337662337662338,
|
671 |
+
"grad_norm": 0.36809061483198696,
|
672 |
+
"learning_rate": 7.552083333333334e-06,
|
673 |
+
"loss": 0.125,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.2467532467532467,
|
678 |
+
"grad_norm": 0.3326924572780158,
|
679 |
+
"learning_rate": 7.526041666666667e-06,
|
680 |
+
"loss": 0.1165,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.2597402597402598,
|
685 |
+
"grad_norm": 0.3381064907954975,
|
686 |
+
"learning_rate": 7.500000000000001e-06,
|
687 |
+
"loss": 0.1242,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.2727272727272727,
|
692 |
+
"grad_norm": 0.31808537453343166,
|
693 |
+
"learning_rate": 7.473958333333334e-06,
|
694 |
+
"loss": 0.1194,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.2857142857142856,
|
699 |
+
"grad_norm": 0.3338293488215449,
|
700 |
+
"learning_rate": 7.447916666666667e-06,
|
701 |
+
"loss": 0.1045,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.2987012987012987,
|
706 |
+
"grad_norm": 0.32638382374328245,
|
707 |
+
"learning_rate": 7.421875000000001e-06,
|
708 |
+
"loss": 0.1274,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.3116883116883118,
|
713 |
+
"grad_norm": 0.3798687835449094,
|
714 |
+
"learning_rate": 7.395833333333335e-06,
|
715 |
+
"loss": 0.1216,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.3246753246753247,
|
720 |
+
"grad_norm": 0.42118782006430655,
|
721 |
+
"learning_rate": 7.369791666666667e-06,
|
722 |
+
"loss": 0.1116,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.3376623376623376,
|
727 |
+
"grad_norm": 0.31491431320109803,
|
728 |
+
"learning_rate": 7.343750000000001e-06,
|
729 |
+
"loss": 0.123,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.3506493506493507,
|
734 |
+
"grad_norm": 0.31006216567911504,
|
735 |
+
"learning_rate": 7.3177083333333345e-06,
|
736 |
+
"loss": 0.1186,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.3636363636363638,
|
741 |
+
"grad_norm": 0.32515923422393395,
|
742 |
+
"learning_rate": 7.291666666666667e-06,
|
743 |
+
"loss": 0.1069,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.3766233766233766,
|
748 |
+
"grad_norm": 0.3258624400110308,
|
749 |
+
"learning_rate": 7.265625e-06,
|
750 |
+
"loss": 0.0925,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.3896103896103895,
|
755 |
+
"grad_norm": 0.3147044898639944,
|
756 |
+
"learning_rate": 7.239583333333334e-06,
|
757 |
+
"loss": 0.1114,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.4025974025974026,
|
762 |
+
"grad_norm": 0.3155522217588101,
|
763 |
+
"learning_rate": 7.213541666666667e-06,
|
764 |
+
"loss": 0.1237,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.4155844155844157,
|
769 |
+
"grad_norm": 0.3144003636320752,
|
770 |
+
"learning_rate": 7.1875e-06,
|
771 |
+
"loss": 0.1159,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.4285714285714286,
|
776 |
+
"grad_norm": 0.32254719268793725,
|
777 |
+
"learning_rate": 7.161458333333334e-06,
|
778 |
+
"loss": 0.1196,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.4415584415584415,
|
783 |
+
"grad_norm": 0.315615751768773,
|
784 |
+
"learning_rate": 7.135416666666667e-06,
|
785 |
+
"loss": 0.1121,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.4545454545454546,
|
790 |
+
"grad_norm": 0.2995055345846169,
|
791 |
+
"learning_rate": 7.109375000000001e-06,
|
792 |
+
"loss": 0.1199,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.4675324675324675,
|
797 |
+
"grad_norm": 0.3457518743206924,
|
798 |
+
"learning_rate": 7.083333333333335e-06,
|
799 |
+
"loss": 0.1262,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.4805194805194806,
|
804 |
+
"grad_norm": 0.34216271471145815,
|
805 |
+
"learning_rate": 7.057291666666667e-06,
|
806 |
+
"loss": 0.1067,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.4935064935064934,
|
811 |
+
"grad_norm": 0.3178295536529888,
|
812 |
+
"learning_rate": 7.031250000000001e-06,
|
813 |
+
"loss": 0.1202,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.5064935064935066,
|
818 |
+
"grad_norm": 0.2819573454273538,
|
819 |
+
"learning_rate": 7.0052083333333345e-06,
|
820 |
+
"loss": 0.1033,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.5194805194805194,
|
825 |
+
"grad_norm": 0.32378485295884113,
|
826 |
+
"learning_rate": 6.979166666666667e-06,
|
827 |
+
"loss": 0.117,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.5324675324675323,
|
832 |
+
"grad_norm": 0.3154734102111175,
|
833 |
+
"learning_rate": 6.9531250000000004e-06,
|
834 |
+
"loss": 0.1089,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.5454545454545454,
|
839 |
+
"grad_norm": 0.3112595772562475,
|
840 |
+
"learning_rate": 6.927083333333334e-06,
|
841 |
+
"loss": 0.1131,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.5584415584415585,
|
846 |
+
"grad_norm": 0.308567184284047,
|
847 |
+
"learning_rate": 6.901041666666667e-06,
|
848 |
+
"loss": 0.0981,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.5714285714285714,
|
853 |
+
"grad_norm": 0.2941894268668758,
|
854 |
+
"learning_rate": 6.875e-06,
|
855 |
+
"loss": 0.0992,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.5844155844155843,
|
860 |
+
"grad_norm": 0.3244832758495866,
|
861 |
+
"learning_rate": 6.848958333333334e-06,
|
862 |
+
"loss": 0.1151,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.5974025974025974,
|
867 |
+
"grad_norm": 0.3486204249378559,
|
868 |
+
"learning_rate": 6.822916666666667e-06,
|
869 |
+
"loss": 0.1144,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.6103896103896105,
|
874 |
+
"grad_norm": 0.3108839874338576,
|
875 |
+
"learning_rate": 6.796875000000001e-06,
|
876 |
+
"loss": 0.1166,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.6233766233766234,
|
881 |
+
"grad_norm": 0.3362850203366801,
|
882 |
+
"learning_rate": 6.770833333333334e-06,
|
883 |
+
"loss": 0.1166,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.6363636363636362,
|
888 |
+
"grad_norm": 0.3001509180382928,
|
889 |
+
"learning_rate": 6.744791666666667e-06,
|
890 |
+
"loss": 0.1105,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.6493506493506493,
|
895 |
+
"grad_norm": 0.2997092451007753,
|
896 |
+
"learning_rate": 6.718750000000001e-06,
|
897 |
+
"loss": 0.1086,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.6623376623376624,
|
902 |
+
"grad_norm": 0.3427204611958163,
|
903 |
+
"learning_rate": 6.6927083333333345e-06,
|
904 |
+
"loss": 0.1054,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.6753246753246753,
|
909 |
+
"grad_norm": 0.2994776086256174,
|
910 |
+
"learning_rate": 6.666666666666667e-06,
|
911 |
+
"loss": 0.1154,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.6883116883116882,
|
916 |
+
"grad_norm": 0.31431249708262365,
|
917 |
+
"learning_rate": 6.6406250000000005e-06,
|
918 |
+
"loss": 0.1227,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.7012987012987013,
|
923 |
+
"grad_norm": 0.311578248576694,
|
924 |
+
"learning_rate": 6.614583333333334e-06,
|
925 |
+
"loss": 0.1084,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.7142857142857144,
|
930 |
+
"grad_norm": 0.3316176770331044,
|
931 |
+
"learning_rate": 6.5885416666666664e-06,
|
932 |
+
"loss": 0.1104,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.7272727272727273,
|
937 |
+
"grad_norm": 0.30426933433479547,
|
938 |
+
"learning_rate": 6.5625e-06,
|
939 |
+
"loss": 0.1125,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.7402597402597402,
|
944 |
+
"grad_norm": 0.28043555053128094,
|
945 |
+
"learning_rate": 6.536458333333334e-06,
|
946 |
+
"loss": 0.0992,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.7532467532467533,
|
951 |
+
"grad_norm": 0.30386469668813254,
|
952 |
+
"learning_rate": 6.510416666666667e-06,
|
953 |
+
"loss": 0.1091,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.7662337662337664,
|
958 |
+
"grad_norm": 0.3224355180252757,
|
959 |
+
"learning_rate": 6.484375000000001e-06,
|
960 |
+
"loss": 0.1057,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.7792207792207793,
|
965 |
+
"grad_norm": 0.33241428871080214,
|
966 |
+
"learning_rate": 6.458333333333334e-06,
|
967 |
+
"loss": 0.1059,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.7922077922077921,
|
972 |
+
"grad_norm": 0.3147577283191284,
|
973 |
+
"learning_rate": 6.432291666666667e-06,
|
974 |
+
"loss": 0.1182,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.8051948051948052,
|
979 |
+
"grad_norm": 0.3078113700946741,
|
980 |
+
"learning_rate": 6.406250000000001e-06,
|
981 |
+
"loss": 0.1041,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.8181818181818183,
|
986 |
+
"grad_norm": 0.29167494344756056,
|
987 |
+
"learning_rate": 6.3802083333333345e-06,
|
988 |
+
"loss": 0.1118,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.8311688311688312,
|
993 |
+
"grad_norm": 0.3185841818138518,
|
994 |
+
"learning_rate": 6.354166666666667e-06,
|
995 |
+
"loss": 0.1086,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.844155844155844,
|
1000 |
+
"grad_norm": 0.32641774304326837,
|
1001 |
+
"learning_rate": 6.3281250000000005e-06,
|
1002 |
+
"loss": 0.1109,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.8571428571428572,
|
1007 |
+
"grad_norm": 0.3203734291459141,
|
1008 |
+
"learning_rate": 6.302083333333334e-06,
|
1009 |
+
"loss": 0.0955,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.87012987012987,
|
1014 |
+
"grad_norm": 0.2890498272171896,
|
1015 |
+
"learning_rate": 6.2760416666666665e-06,
|
1016 |
+
"loss": 0.101,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.883116883116883,
|
1021 |
+
"grad_norm": 0.29736342466973853,
|
1022 |
+
"learning_rate": 6.25e-06,
|
1023 |
+
"loss": 0.118,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.896103896103896,
|
1028 |
+
"grad_norm": 0.31984473875794944,
|
1029 |
+
"learning_rate": 6.223958333333334e-06,
|
1030 |
+
"loss": 0.1102,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.9090909090909092,
|
1035 |
+
"grad_norm": 0.3172704335356637,
|
1036 |
+
"learning_rate": 6.197916666666667e-06,
|
1037 |
+
"loss": 0.1082,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.922077922077922,
|
1042 |
+
"grad_norm": 0.2973111874066074,
|
1043 |
+
"learning_rate": 6.171875e-06,
|
1044 |
+
"loss": 0.1197,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.935064935064935,
|
1049 |
+
"grad_norm": 0.3095998340575272,
|
1050 |
+
"learning_rate": 6.145833333333334e-06,
|
1051 |
+
"loss": 0.1079,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.948051948051948,
|
1056 |
+
"grad_norm": 0.31787152770234606,
|
1057 |
+
"learning_rate": 6.119791666666667e-06,
|
1058 |
+
"loss": 0.0994,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.9610389610389611,
|
1063 |
+
"grad_norm": 0.28985366328378903,
|
1064 |
+
"learning_rate": 6.093750000000001e-06,
|
1065 |
+
"loss": 0.1202,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.974025974025974,
|
1070 |
+
"grad_norm": 0.3052098497087059,
|
1071 |
+
"learning_rate": 6.0677083333333346e-06,
|
1072 |
+
"loss": 0.1137,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.987012987012987,
|
1077 |
+
"grad_norm": 0.3066915552338606,
|
1078 |
+
"learning_rate": 6.041666666666667e-06,
|
1079 |
+
"loss": 0.1172,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 2.0,
|
1084 |
+
"grad_norm": 0.30629249293934785,
|
1085 |
+
"learning_rate": 6.0156250000000005e-06,
|
1086 |
+
"loss": 0.1032,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 2.012987012987013,
|
1091 |
+
"grad_norm": 0.35023782090844824,
|
1092 |
+
"learning_rate": 5.989583333333334e-06,
|
1093 |
+
"loss": 0.0557,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.0259740259740258,
|
1098 |
+
"grad_norm": 0.2862415000889261,
|
1099 |
+
"learning_rate": 5.9635416666666665e-06,
|
1100 |
+
"loss": 0.0656,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.038961038961039,
|
1105 |
+
"grad_norm": 0.25460716359572677,
|
1106 |
+
"learning_rate": 5.9375e-06,
|
1107 |
+
"loss": 0.0559,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.051948051948052,
|
1112 |
+
"grad_norm": 0.32189640709965023,
|
1113 |
+
"learning_rate": 5.911458333333334e-06,
|
1114 |
+
"loss": 0.0563,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.064935064935065,
|
1119 |
+
"grad_norm": 0.34761763544000046,
|
1120 |
+
"learning_rate": 5.885416666666667e-06,
|
1121 |
+
"loss": 0.0695,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.0779220779220777,
|
1126 |
+
"grad_norm": 0.2780054835792156,
|
1127 |
+
"learning_rate": 5.859375e-06,
|
1128 |
+
"loss": 0.0555,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.090909090909091,
|
1133 |
+
"grad_norm": 0.24032473108802174,
|
1134 |
+
"learning_rate": 5.833333333333334e-06,
|
1135 |
+
"loss": 0.0565,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.103896103896104,
|
1140 |
+
"grad_norm": 0.2950389512514924,
|
1141 |
+
"learning_rate": 5.807291666666667e-06,
|
1142 |
+
"loss": 0.0566,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.116883116883117,
|
1147 |
+
"grad_norm": 0.22432748520418566,
|
1148 |
+
"learning_rate": 5.781250000000001e-06,
|
1149 |
+
"loss": 0.056,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.1298701298701297,
|
1154 |
+
"grad_norm": 0.24784953484105113,
|
1155 |
+
"learning_rate": 5.755208333333335e-06,
|
1156 |
+
"loss": 0.0479,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.142857142857143,
|
1161 |
+
"grad_norm": 0.2702464812816263,
|
1162 |
+
"learning_rate": 5.729166666666667e-06,
|
1163 |
+
"loss": 0.0591,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.155844155844156,
|
1168 |
+
"grad_norm": 0.24201294320174244,
|
1169 |
+
"learning_rate": 5.7031250000000006e-06,
|
1170 |
+
"loss": 0.0599,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.168831168831169,
|
1175 |
+
"grad_norm": 0.27746964323966916,
|
1176 |
+
"learning_rate": 5.677083333333334e-06,
|
1177 |
+
"loss": 0.0533,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.1818181818181817,
|
1182 |
+
"grad_norm": 0.2897264068192118,
|
1183 |
+
"learning_rate": 5.6510416666666665e-06,
|
1184 |
+
"loss": 0.053,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.1948051948051948,
|
1189 |
+
"grad_norm": 0.27265023383714393,
|
1190 |
+
"learning_rate": 5.625e-06,
|
1191 |
+
"loss": 0.0663,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.207792207792208,
|
1196 |
+
"grad_norm": 0.23815823204180192,
|
1197 |
+
"learning_rate": 5.598958333333334e-06,
|
1198 |
+
"loss": 0.0553,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.220779220779221,
|
1203 |
+
"grad_norm": 0.27451200943828685,
|
1204 |
+
"learning_rate": 5.572916666666667e-06,
|
1205 |
+
"loss": 0.0628,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.2337662337662336,
|
1210 |
+
"grad_norm": 0.24756583000652174,
|
1211 |
+
"learning_rate": 5.546875e-06,
|
1212 |
+
"loss": 0.0556,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.2467532467532467,
|
1217 |
+
"grad_norm": 0.2544315370018155,
|
1218 |
+
"learning_rate": 5.520833333333334e-06,
|
1219 |
+
"loss": 0.0578,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.25974025974026,
|
1224 |
+
"grad_norm": 0.23275351662072738,
|
1225 |
+
"learning_rate": 5.494791666666667e-06,
|
1226 |
+
"loss": 0.0538,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.2727272727272725,
|
1231 |
+
"grad_norm": 0.2618251778102254,
|
1232 |
+
"learning_rate": 5.468750000000001e-06,
|
1233 |
+
"loss": 0.0658,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 2.2857142857142856,
|
1238 |
+
"grad_norm": 0.25188249686135555,
|
1239 |
+
"learning_rate": 5.442708333333334e-06,
|
1240 |
+
"loss": 0.0486,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.2987012987012987,
|
1245 |
+
"grad_norm": 0.28055649582376346,
|
1246 |
+
"learning_rate": 5.416666666666667e-06,
|
1247 |
+
"loss": 0.0626,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 2.311688311688312,
|
1252 |
+
"grad_norm": 0.24599632120103626,
|
1253 |
+
"learning_rate": 5.390625000000001e-06,
|
1254 |
+
"loss": 0.0583,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.324675324675325,
|
1259 |
+
"grad_norm": 0.27127338612129825,
|
1260 |
+
"learning_rate": 5.364583333333334e-06,
|
1261 |
+
"loss": 0.0586,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.3376623376623376,
|
1266 |
+
"grad_norm": 0.24409520592231887,
|
1267 |
+
"learning_rate": 5.3385416666666666e-06,
|
1268 |
+
"loss": 0.0546,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.3506493506493507,
|
1273 |
+
"grad_norm": 0.2730534578010532,
|
1274 |
+
"learning_rate": 5.3125e-06,
|
1275 |
+
"loss": 0.049,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.3636363636363638,
|
1280 |
+
"grad_norm": 0.3063550918757163,
|
1281 |
+
"learning_rate": 5.286458333333334e-06,
|
1282 |
+
"loss": 0.0626,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 2.3766233766233764,
|
1287 |
+
"grad_norm": 0.24974475183252906,
|
1288 |
+
"learning_rate": 5.260416666666666e-06,
|
1289 |
+
"loss": 0.0644,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 2.3896103896103895,
|
1294 |
+
"grad_norm": 0.27100592128125456,
|
1295 |
+
"learning_rate": 5.234375e-06,
|
1296 |
+
"loss": 0.0585,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.4025974025974026,
|
1301 |
+
"grad_norm": 0.2814186690984644,
|
1302 |
+
"learning_rate": 5.208333333333334e-06,
|
1303 |
+
"loss": 0.0582,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.4155844155844157,
|
1308 |
+
"grad_norm": 0.25261977006702085,
|
1309 |
+
"learning_rate": 5.182291666666667e-06,
|
1310 |
+
"loss": 0.0518,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.4285714285714284,
|
1315 |
+
"grad_norm": 0.2657725313570488,
|
1316 |
+
"learning_rate": 5.156250000000001e-06,
|
1317 |
+
"loss": 0.0578,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.4415584415584415,
|
1322 |
+
"grad_norm": 0.2546037193133823,
|
1323 |
+
"learning_rate": 5.130208333333334e-06,
|
1324 |
+
"loss": 0.0538,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.4545454545454546,
|
1329 |
+
"grad_norm": 0.281253389764468,
|
1330 |
+
"learning_rate": 5.104166666666667e-06,
|
1331 |
+
"loss": 0.0635,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.4675324675324677,
|
1336 |
+
"grad_norm": 0.26338794462461806,
|
1337 |
+
"learning_rate": 5.078125000000001e-06,
|
1338 |
+
"loss": 0.0562,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.4805194805194803,
|
1343 |
+
"grad_norm": 0.24941779389697705,
|
1344 |
+
"learning_rate": 5.0520833333333344e-06,
|
1345 |
+
"loss": 0.0556,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.4935064935064934,
|
1350 |
+
"grad_norm": 0.24447967903315854,
|
1351 |
+
"learning_rate": 5.026041666666667e-06,
|
1352 |
+
"loss": 0.0583,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.5064935064935066,
|
1357 |
+
"grad_norm": 0.23904209946561095,
|
1358 |
+
"learning_rate": 5e-06,
|
1359 |
+
"loss": 0.0466,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.5194805194805197,
|
1364 |
+
"grad_norm": 0.2647184458213586,
|
1365 |
+
"learning_rate": 4.973958333333333e-06,
|
1366 |
+
"loss": 0.0631,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.5324675324675323,
|
1371 |
+
"grad_norm": 0.22821154672037003,
|
1372 |
+
"learning_rate": 4.947916666666667e-06,
|
1373 |
+
"loss": 0.0473,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.5454545454545454,
|
1378 |
+
"grad_norm": 0.2626904902801862,
|
1379 |
+
"learning_rate": 4.921875e-06,
|
1380 |
+
"loss": 0.0506,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.5584415584415585,
|
1385 |
+
"grad_norm": 0.24930087318211805,
|
1386 |
+
"learning_rate": 4.895833333333333e-06,
|
1387 |
+
"loss": 0.0572,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.571428571428571,
|
1392 |
+
"grad_norm": 0.2481390560509281,
|
1393 |
+
"learning_rate": 4.869791666666667e-06,
|
1394 |
+
"loss": 0.0555,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.5844155844155843,
|
1399 |
+
"grad_norm": 0.2877573573303393,
|
1400 |
+
"learning_rate": 4.84375e-06,
|
1401 |
+
"loss": 0.067,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.5974025974025974,
|
1406 |
+
"grad_norm": 0.25217308853248577,
|
1407 |
+
"learning_rate": 4.817708333333334e-06,
|
1408 |
+
"loss": 0.0471,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.6103896103896105,
|
1413 |
+
"grad_norm": 0.24328918721469303,
|
1414 |
+
"learning_rate": 4.791666666666668e-06,
|
1415 |
+
"loss": 0.0576,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.6233766233766236,
|
1420 |
+
"grad_norm": 0.2523930869041385,
|
1421 |
+
"learning_rate": 4.765625000000001e-06,
|
1422 |
+
"loss": 0.0545,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.6363636363636362,
|
1427 |
+
"grad_norm": 0.2535471838454832,
|
1428 |
+
"learning_rate": 4.739583333333334e-06,
|
1429 |
+
"loss": 0.0625,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.6493506493506493,
|
1434 |
+
"grad_norm": 0.2712254471205784,
|
1435 |
+
"learning_rate": 4.7135416666666675e-06,
|
1436 |
+
"loss": 0.061,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.6623376623376624,
|
1441 |
+
"grad_norm": 0.26161221717819355,
|
1442 |
+
"learning_rate": 4.6875000000000004e-06,
|
1443 |
+
"loss": 0.0567,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.675324675324675,
|
1448 |
+
"grad_norm": 0.24838669747413192,
|
1449 |
+
"learning_rate": 4.661458333333333e-06,
|
1450 |
+
"loss": 0.0518,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.688311688311688,
|
1455 |
+
"grad_norm": 0.23966177399361988,
|
1456 |
+
"learning_rate": 4.635416666666667e-06,
|
1457 |
+
"loss": 0.0542,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.7012987012987013,
|
1462 |
+
"grad_norm": 0.24657984039301706,
|
1463 |
+
"learning_rate": 4.609375e-06,
|
1464 |
+
"loss": 0.0666,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.7142857142857144,
|
1469 |
+
"grad_norm": 0.2583103237439079,
|
1470 |
+
"learning_rate": 4.583333333333333e-06,
|
1471 |
+
"loss": 0.0545,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.7272727272727275,
|
1476 |
+
"grad_norm": 0.2562617620737508,
|
1477 |
+
"learning_rate": 4.557291666666667e-06,
|
1478 |
+
"loss": 0.0558,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.74025974025974,
|
1483 |
+
"grad_norm": 0.23308521833875492,
|
1484 |
+
"learning_rate": 4.53125e-06,
|
1485 |
+
"loss": 0.0496,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.7532467532467533,
|
1490 |
+
"grad_norm": 0.24092047046705078,
|
1491 |
+
"learning_rate": 4.505208333333334e-06,
|
1492 |
+
"loss": 0.0596,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.7662337662337664,
|
1497 |
+
"grad_norm": 0.27349855814243884,
|
1498 |
+
"learning_rate": 4.479166666666667e-06,
|
1499 |
+
"loss": 0.0468,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.779220779220779,
|
1504 |
+
"grad_norm": 0.2275758123203626,
|
1505 |
+
"learning_rate": 4.453125000000001e-06,
|
1506 |
+
"loss": 0.056,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.792207792207792,
|
1511 |
+
"grad_norm": 0.266884630074945,
|
1512 |
+
"learning_rate": 4.427083333333334e-06,
|
1513 |
+
"loss": 0.0571,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.8051948051948052,
|
1518 |
+
"grad_norm": 0.25024069366637947,
|
1519 |
+
"learning_rate": 4.4010416666666675e-06,
|
1520 |
+
"loss": 0.0642,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.8181818181818183,
|
1525 |
+
"grad_norm": 0.24857662695800786,
|
1526 |
+
"learning_rate": 4.3750000000000005e-06,
|
1527 |
+
"loss": 0.0486,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.8311688311688314,
|
1532 |
+
"grad_norm": 0.25080858473278267,
|
1533 |
+
"learning_rate": 4.3489583333333334e-06,
|
1534 |
+
"loss": 0.0584,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.844155844155844,
|
1539 |
+
"grad_norm": 0.24530740860883163,
|
1540 |
+
"learning_rate": 4.322916666666667e-06,
|
1541 |
+
"loss": 0.0633,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.857142857142857,
|
1546 |
+
"grad_norm": 0.23913022308407994,
|
1547 |
+
"learning_rate": 4.296875e-06,
|
1548 |
+
"loss": 0.0549,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.87012987012987,
|
1553 |
+
"grad_norm": 0.24149083025156237,
|
1554 |
+
"learning_rate": 4.270833333333333e-06,
|
1555 |
+
"loss": 0.0467,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.883116883116883,
|
1560 |
+
"grad_norm": 0.26965528602346694,
|
1561 |
+
"learning_rate": 4.244791666666667e-06,
|
1562 |
+
"loss": 0.0606,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.896103896103896,
|
1567 |
+
"grad_norm": 0.25365858810429237,
|
1568 |
+
"learning_rate": 4.21875e-06,
|
1569 |
+
"loss": 0.0694,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.909090909090909,
|
1574 |
+
"grad_norm": 0.24179541312218353,
|
1575 |
+
"learning_rate": 4.192708333333334e-06,
|
1576 |
+
"loss": 0.0616,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.9220779220779223,
|
1581 |
+
"grad_norm": 0.2361020434984871,
|
1582 |
+
"learning_rate": 4.166666666666667e-06,
|
1583 |
+
"loss": 0.0476,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.935064935064935,
|
1588 |
+
"grad_norm": 0.27226949918910437,
|
1589 |
+
"learning_rate": 4.140625000000001e-06,
|
1590 |
+
"loss": 0.0642,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.948051948051948,
|
1595 |
+
"grad_norm": 0.2527942476147371,
|
1596 |
+
"learning_rate": 4.114583333333334e-06,
|
1597 |
+
"loss": 0.0619,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.961038961038961,
|
1602 |
+
"grad_norm": 0.24251482806607963,
|
1603 |
+
"learning_rate": 4.0885416666666675e-06,
|
1604 |
+
"loss": 0.0525,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.974025974025974,
|
1609 |
+
"grad_norm": 0.23476269808521869,
|
1610 |
+
"learning_rate": 4.0625000000000005e-06,
|
1611 |
+
"loss": 0.062,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.987012987012987,
|
1616 |
+
"grad_norm": 0.2374808258403478,
|
1617 |
+
"learning_rate": 4.0364583333333335e-06,
|
1618 |
+
"loss": 0.0505,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 3.0,
|
1623 |
+
"grad_norm": 0.24928176045345568,
|
1624 |
+
"learning_rate": 4.010416666666667e-06,
|
1625 |
+
"loss": 0.0626,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 3.012987012987013,
|
1630 |
+
"grad_norm": 0.22194182328876036,
|
1631 |
+
"learning_rate": 3.984375e-06,
|
1632 |
+
"loss": 0.0344,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 3.0259740259740258,
|
1637 |
+
"grad_norm": 0.22872923006570003,
|
1638 |
+
"learning_rate": 3.958333333333333e-06,
|
1639 |
+
"loss": 0.0413,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 3.038961038961039,
|
1644 |
+
"grad_norm": 0.19665583235009848,
|
1645 |
+
"learning_rate": 3.932291666666667e-06,
|
1646 |
+
"loss": 0.0287,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 3.051948051948052,
|
1651 |
+
"grad_norm": 0.19667069366179346,
|
1652 |
+
"learning_rate": 3.90625e-06,
|
1653 |
+
"loss": 0.0352,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 3.064935064935065,
|
1658 |
+
"grad_norm": 0.215711200723706,
|
1659 |
+
"learning_rate": 3.880208333333333e-06,
|
1660 |
+
"loss": 0.0333,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 3.0779220779220777,
|
1665 |
+
"grad_norm": 0.2313666120277444,
|
1666 |
+
"learning_rate": 3.854166666666667e-06,
|
1667 |
+
"loss": 0.0284,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 3.090909090909091,
|
1672 |
+
"grad_norm": 0.23091064810625503,
|
1673 |
+
"learning_rate": 3.828125000000001e-06,
|
1674 |
+
"loss": 0.0328,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 3.103896103896104,
|
1679 |
+
"grad_norm": 0.20452236865758217,
|
1680 |
+
"learning_rate": 3.8020833333333333e-06,
|
1681 |
+
"loss": 0.0319,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 3.116883116883117,
|
1686 |
+
"grad_norm": 0.2130097271956879,
|
1687 |
+
"learning_rate": 3.776041666666667e-06,
|
1688 |
+
"loss": 0.0353,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.1298701298701297,
|
1693 |
+
"grad_norm": 0.17171823929322136,
|
1694 |
+
"learning_rate": 3.7500000000000005e-06,
|
1695 |
+
"loss": 0.0259,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.142857142857143,
|
1700 |
+
"grad_norm": 0.18378369851335255,
|
1701 |
+
"learning_rate": 3.7239583333333335e-06,
|
1702 |
+
"loss": 0.0313,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 3.155844155844156,
|
1707 |
+
"grad_norm": 0.1828525728293844,
|
1708 |
+
"learning_rate": 3.6979166666666673e-06,
|
1709 |
+
"loss": 0.028,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 3.168831168831169,
|
1714 |
+
"grad_norm": 0.19380765006793751,
|
1715 |
+
"learning_rate": 3.6718750000000003e-06,
|
1716 |
+
"loss": 0.0289,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 3.1818181818181817,
|
1721 |
+
"grad_norm": 0.1990094351044486,
|
1722 |
+
"learning_rate": 3.6458333333333333e-06,
|
1723 |
+
"loss": 0.027,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 3.1948051948051948,
|
1728 |
+
"grad_norm": 0.18792815598678744,
|
1729 |
+
"learning_rate": 3.619791666666667e-06,
|
1730 |
+
"loss": 0.0291,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 3.207792207792208,
|
1735 |
+
"grad_norm": 0.18192941363864568,
|
1736 |
+
"learning_rate": 3.59375e-06,
|
1737 |
+
"loss": 0.0333,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 3.220779220779221,
|
1742 |
+
"grad_norm": 0.19920093771078823,
|
1743 |
+
"learning_rate": 3.5677083333333335e-06,
|
1744 |
+
"loss": 0.0359,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 3.2337662337662336,
|
1749 |
+
"grad_norm": 0.20752665916487095,
|
1750 |
+
"learning_rate": 3.5416666666666673e-06,
|
1751 |
+
"loss": 0.0346,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 3.2467532467532467,
|
1756 |
+
"grad_norm": 0.19735194752925486,
|
1757 |
+
"learning_rate": 3.5156250000000003e-06,
|
1758 |
+
"loss": 0.0286,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 3.25974025974026,
|
1763 |
+
"grad_norm": 0.21107169053286765,
|
1764 |
+
"learning_rate": 3.4895833333333333e-06,
|
1765 |
+
"loss": 0.0302,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 3.2727272727272725,
|
1770 |
+
"grad_norm": 0.19257404946331436,
|
1771 |
+
"learning_rate": 3.463541666666667e-06,
|
1772 |
+
"loss": 0.0266,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 3.2857142857142856,
|
1777 |
+
"grad_norm": 0.20416526855617004,
|
1778 |
+
"learning_rate": 3.4375e-06,
|
1779 |
+
"loss": 0.0338,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 3.2987012987012987,
|
1784 |
+
"grad_norm": 0.16009297749675383,
|
1785 |
+
"learning_rate": 3.4114583333333335e-06,
|
1786 |
+
"loss": 0.0298,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 3.311688311688312,
|
1791 |
+
"grad_norm": 0.1865805004238836,
|
1792 |
+
"learning_rate": 3.385416666666667e-06,
|
1793 |
+
"loss": 0.0381,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.324675324675325,
|
1798 |
+
"grad_norm": 0.1856518020717426,
|
1799 |
+
"learning_rate": 3.3593750000000003e-06,
|
1800 |
+
"loss": 0.032,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.3376623376623376,
|
1805 |
+
"grad_norm": 0.1643615680531049,
|
1806 |
+
"learning_rate": 3.3333333333333333e-06,
|
1807 |
+
"loss": 0.0261,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 3.3506493506493507,
|
1812 |
+
"grad_norm": 0.20350173056124413,
|
1813 |
+
"learning_rate": 3.307291666666667e-06,
|
1814 |
+
"loss": 0.0289,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 3.3636363636363638,
|
1819 |
+
"grad_norm": 0.1851001849213331,
|
1820 |
+
"learning_rate": 3.28125e-06,
|
1821 |
+
"loss": 0.0303,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 3.3766233766233764,
|
1826 |
+
"grad_norm": 0.17486718674776422,
|
1827 |
+
"learning_rate": 3.2552083333333335e-06,
|
1828 |
+
"loss": 0.0341,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 3.3896103896103895,
|
1833 |
+
"grad_norm": 0.20208654835258116,
|
1834 |
+
"learning_rate": 3.229166666666667e-06,
|
1835 |
+
"loss": 0.0292,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 3.4025974025974026,
|
1840 |
+
"grad_norm": 0.1879927363412167,
|
1841 |
+
"learning_rate": 3.2031250000000004e-06,
|
1842 |
+
"loss": 0.029,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 3.4155844155844157,
|
1847 |
+
"grad_norm": 0.2092150414129076,
|
1848 |
+
"learning_rate": 3.1770833333333333e-06,
|
1849 |
+
"loss": 0.0335,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 3.4285714285714284,
|
1854 |
+
"grad_norm": 0.1828398699501031,
|
1855 |
+
"learning_rate": 3.151041666666667e-06,
|
1856 |
+
"loss": 0.0287,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 3.4415584415584415,
|
1861 |
+
"grad_norm": 0.1646440626911746,
|
1862 |
+
"learning_rate": 3.125e-06,
|
1863 |
+
"loss": 0.0249,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 3.4545454545454546,
|
1868 |
+
"grad_norm": 0.2213658118877642,
|
1869 |
+
"learning_rate": 3.0989583333333336e-06,
|
1870 |
+
"loss": 0.0313,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 3.4675324675324677,
|
1875 |
+
"grad_norm": 0.19833753553756947,
|
1876 |
+
"learning_rate": 3.072916666666667e-06,
|
1877 |
+
"loss": 0.0305,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 3.4805194805194803,
|
1882 |
+
"grad_norm": 0.18639002939061947,
|
1883 |
+
"learning_rate": 3.0468750000000004e-06,
|
1884 |
+
"loss": 0.0285,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 3.4935064935064934,
|
1889 |
+
"grad_norm": 0.2049138683286163,
|
1890 |
+
"learning_rate": 3.0208333333333334e-06,
|
1891 |
+
"loss": 0.0253,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 3.5064935064935066,
|
1896 |
+
"grad_norm": 0.17884962390491255,
|
1897 |
+
"learning_rate": 2.994791666666667e-06,
|
1898 |
+
"loss": 0.0307,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.5194805194805197,
|
1903 |
+
"grad_norm": 0.1982271960154676,
|
1904 |
+
"learning_rate": 2.96875e-06,
|
1905 |
+
"loss": 0.0269,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.5324675324675323,
|
1910 |
+
"grad_norm": 0.1802446997280461,
|
1911 |
+
"learning_rate": 2.9427083333333336e-06,
|
1912 |
+
"loss": 0.0289,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 3.5454545454545454,
|
1917 |
+
"grad_norm": 0.22296142453499057,
|
1918 |
+
"learning_rate": 2.916666666666667e-06,
|
1919 |
+
"loss": 0.0312,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 3.5584415584415585,
|
1924 |
+
"grad_norm": 0.20453986728427528,
|
1925 |
+
"learning_rate": 2.8906250000000004e-06,
|
1926 |
+
"loss": 0.0314,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 3.571428571428571,
|
1931 |
+
"grad_norm": 0.18470206760727637,
|
1932 |
+
"learning_rate": 2.8645833333333334e-06,
|
1933 |
+
"loss": 0.0224,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 3.5844155844155843,
|
1938 |
+
"grad_norm": 0.18999613246744235,
|
1939 |
+
"learning_rate": 2.838541666666667e-06,
|
1940 |
+
"loss": 0.0362,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 3.5974025974025974,
|
1945 |
+
"grad_norm": 0.1680826823967811,
|
1946 |
+
"learning_rate": 2.8125e-06,
|
1947 |
+
"loss": 0.0295,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 3.6103896103896105,
|
1952 |
+
"grad_norm": 0.1750343035924861,
|
1953 |
+
"learning_rate": 2.7864583333333336e-06,
|
1954 |
+
"loss": 0.0252,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 3.6233766233766236,
|
1959 |
+
"grad_norm": 0.1889879529926468,
|
1960 |
+
"learning_rate": 2.760416666666667e-06,
|
1961 |
+
"loss": 0.0251,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 3.6363636363636362,
|
1966 |
+
"grad_norm": 0.18898957778162337,
|
1967 |
+
"learning_rate": 2.7343750000000004e-06,
|
1968 |
+
"loss": 0.0289,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 3.6493506493506493,
|
1973 |
+
"grad_norm": 0.178208525512879,
|
1974 |
+
"learning_rate": 2.7083333333333334e-06,
|
1975 |
+
"loss": 0.0256,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 3.6623376623376624,
|
1980 |
+
"grad_norm": 0.18961129083755054,
|
1981 |
+
"learning_rate": 2.682291666666667e-06,
|
1982 |
+
"loss": 0.0338,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 3.675324675324675,
|
1987 |
+
"grad_norm": 0.19080605075919305,
|
1988 |
+
"learning_rate": 2.65625e-06,
|
1989 |
+
"loss": 0.0267,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 3.688311688311688,
|
1994 |
+
"grad_norm": 0.2147288655205537,
|
1995 |
+
"learning_rate": 2.630208333333333e-06,
|
1996 |
+
"loss": 0.0261,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 3.7012987012987013,
|
2001 |
+
"grad_norm": 0.17582709254045928,
|
2002 |
+
"learning_rate": 2.604166666666667e-06,
|
2003 |
+
"loss": 0.0223,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 3.7142857142857144,
|
2008 |
+
"grad_norm": 0.17094890369659926,
|
2009 |
+
"learning_rate": 2.5781250000000004e-06,
|
2010 |
+
"loss": 0.0292,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 3.7272727272727275,
|
2015 |
+
"grad_norm": 0.1998709196442666,
|
2016 |
+
"learning_rate": 2.5520833333333334e-06,
|
2017 |
+
"loss": 0.0304,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 3.74025974025974,
|
2022 |
+
"grad_norm": 0.17072439958723487,
|
2023 |
+
"learning_rate": 2.5260416666666672e-06,
|
2024 |
+
"loss": 0.0269,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 3.7532467532467533,
|
2029 |
+
"grad_norm": 0.1903923054426443,
|
2030 |
+
"learning_rate": 2.5e-06,
|
2031 |
+
"loss": 0.0296,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 3.7662337662337664,
|
2036 |
+
"grad_norm": 0.18728539960718932,
|
2037 |
+
"learning_rate": 2.4739583333333336e-06,
|
2038 |
+
"loss": 0.0286,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 3.779220779220779,
|
2043 |
+
"grad_norm": 0.1747917940824676,
|
2044 |
+
"learning_rate": 2.4479166666666666e-06,
|
2045 |
+
"loss": 0.0349,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 3.792207792207792,
|
2050 |
+
"grad_norm": 0.17515549499079433,
|
2051 |
+
"learning_rate": 2.421875e-06,
|
2052 |
+
"loss": 0.027,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 3.8051948051948052,
|
2057 |
+
"grad_norm": 0.17289038920757535,
|
2058 |
+
"learning_rate": 2.395833333333334e-06,
|
2059 |
+
"loss": 0.0308,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 3.8181818181818183,
|
2064 |
+
"grad_norm": 0.1620641486147313,
|
2065 |
+
"learning_rate": 2.369791666666667e-06,
|
2066 |
+
"loss": 0.0235,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 3.8311688311688314,
|
2071 |
+
"grad_norm": 0.1800272114039067,
|
2072 |
+
"learning_rate": 2.3437500000000002e-06,
|
2073 |
+
"loss": 0.029,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 3.844155844155844,
|
2078 |
+
"grad_norm": 0.1714629421802426,
|
2079 |
+
"learning_rate": 2.3177083333333336e-06,
|
2080 |
+
"loss": 0.0325,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 3.857142857142857,
|
2085 |
+
"grad_norm": 0.19442415161637205,
|
2086 |
+
"learning_rate": 2.2916666666666666e-06,
|
2087 |
+
"loss": 0.0289,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 3.87012987012987,
|
2092 |
+
"grad_norm": 0.17365311658981006,
|
2093 |
+
"learning_rate": 2.265625e-06,
|
2094 |
+
"loss": 0.0264,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 3.883116883116883,
|
2099 |
+
"grad_norm": 0.1562256172576751,
|
2100 |
+
"learning_rate": 2.2395833333333334e-06,
|
2101 |
+
"loss": 0.0204,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 3.896103896103896,
|
2106 |
+
"grad_norm": 0.18527276756636948,
|
2107 |
+
"learning_rate": 2.213541666666667e-06,
|
2108 |
+
"loss": 0.038,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 3.909090909090909,
|
2113 |
+
"grad_norm": 0.185548190702714,
|
2114 |
+
"learning_rate": 2.1875000000000002e-06,
|
2115 |
+
"loss": 0.0274,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 3.9220779220779223,
|
2120 |
+
"grad_norm": 0.18710521272243544,
|
2121 |
+
"learning_rate": 2.1614583333333336e-06,
|
2122 |
+
"loss": 0.0282,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 3.935064935064935,
|
2127 |
+
"grad_norm": 0.19705254815926593,
|
2128 |
+
"learning_rate": 2.1354166666666666e-06,
|
2129 |
+
"loss": 0.029,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 3.948051948051948,
|
2134 |
+
"grad_norm": 0.18926365228746053,
|
2135 |
+
"learning_rate": 2.109375e-06,
|
2136 |
+
"loss": 0.031,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 3.961038961038961,
|
2141 |
+
"grad_norm": 0.20932783484563577,
|
2142 |
+
"learning_rate": 2.0833333333333334e-06,
|
2143 |
+
"loss": 0.0347,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 3.974025974025974,
|
2148 |
+
"grad_norm": 0.1844456439281899,
|
2149 |
+
"learning_rate": 2.057291666666667e-06,
|
2150 |
+
"loss": 0.0297,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 3.987012987012987,
|
2155 |
+
"grad_norm": 0.17809794425485584,
|
2156 |
+
"learning_rate": 2.0312500000000002e-06,
|
2157 |
+
"loss": 0.0286,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 4.0,
|
2162 |
+
"grad_norm": 0.20096357456266348,
|
2163 |
+
"learning_rate": 2.0052083333333337e-06,
|
2164 |
+
"loss": 0.0258,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 4.012987012987013,
|
2169 |
+
"grad_norm": 0.15779488457929053,
|
2170 |
+
"learning_rate": 1.9791666666666666e-06,
|
2171 |
+
"loss": 0.0197,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 4.025974025974026,
|
2176 |
+
"grad_norm": 0.17635189527472814,
|
2177 |
+
"learning_rate": 1.953125e-06,
|
2178 |
+
"loss": 0.0214,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 4.038961038961039,
|
2183 |
+
"grad_norm": 0.13517784425731946,
|
2184 |
+
"learning_rate": 1.9270833333333334e-06,
|
2185 |
+
"loss": 0.0226,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 4.0519480519480515,
|
2190 |
+
"grad_norm": 0.12354611702984837,
|
2191 |
+
"learning_rate": 1.9010416666666666e-06,
|
2192 |
+
"loss": 0.0211,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 4.064935064935065,
|
2197 |
+
"grad_norm": 0.12929184375596317,
|
2198 |
+
"learning_rate": 1.8750000000000003e-06,
|
2199 |
+
"loss": 0.0184,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 4.077922077922078,
|
2204 |
+
"grad_norm": 0.13540347091068558,
|
2205 |
+
"learning_rate": 1.8489583333333337e-06,
|
2206 |
+
"loss": 0.0216,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 4.090909090909091,
|
2211 |
+
"grad_norm": 0.16456545986510454,
|
2212 |
+
"learning_rate": 1.8229166666666666e-06,
|
2213 |
+
"loss": 0.0275,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.103896103896104,
|
2218 |
+
"grad_norm": 0.13103783773070332,
|
2219 |
+
"learning_rate": 1.796875e-06,
|
2220 |
+
"loss": 0.0167,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.116883116883117,
|
2225 |
+
"grad_norm": 0.15039425342491727,
|
2226 |
+
"learning_rate": 1.7708333333333337e-06,
|
2227 |
+
"loss": 0.0176,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 4.12987012987013,
|
2232 |
+
"grad_norm": 0.1528874968260015,
|
2233 |
+
"learning_rate": 1.7447916666666667e-06,
|
2234 |
+
"loss": 0.0228,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 4.142857142857143,
|
2239 |
+
"grad_norm": 0.1277979944302909,
|
2240 |
+
"learning_rate": 1.71875e-06,
|
2241 |
+
"loss": 0.0153,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 4.1558441558441555,
|
2246 |
+
"grad_norm": 0.10986972687139382,
|
2247 |
+
"learning_rate": 1.6927083333333335e-06,
|
2248 |
+
"loss": 0.0114,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 4.1688311688311686,
|
2253 |
+
"grad_norm": 0.12327195530898087,
|
2254 |
+
"learning_rate": 1.6666666666666667e-06,
|
2255 |
+
"loss": 0.0247,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 4.181818181818182,
|
2260 |
+
"grad_norm": 0.1303364571800614,
|
2261 |
+
"learning_rate": 1.640625e-06,
|
2262 |
+
"loss": 0.0132,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 4.194805194805195,
|
2267 |
+
"grad_norm": 0.1129046695889519,
|
2268 |
+
"learning_rate": 1.6145833333333335e-06,
|
2269 |
+
"loss": 0.0137,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 4.207792207792208,
|
2274 |
+
"grad_norm": 0.12487716628769142,
|
2275 |
+
"learning_rate": 1.5885416666666667e-06,
|
2276 |
+
"loss": 0.0171,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 4.220779220779221,
|
2281 |
+
"grad_norm": 0.11121142713696242,
|
2282 |
+
"learning_rate": 1.5625e-06,
|
2283 |
+
"loss": 0.0119,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 4.233766233766234,
|
2288 |
+
"grad_norm": 0.12219540809008053,
|
2289 |
+
"learning_rate": 1.5364583333333335e-06,
|
2290 |
+
"loss": 0.02,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 4.246753246753247,
|
2295 |
+
"grad_norm": 0.1231988249512158,
|
2296 |
+
"learning_rate": 1.5104166666666667e-06,
|
2297 |
+
"loss": 0.0167,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 4.259740259740259,
|
2302 |
+
"grad_norm": 0.12591039931221573,
|
2303 |
+
"learning_rate": 1.484375e-06,
|
2304 |
+
"loss": 0.0145,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 4.2727272727272725,
|
2309 |
+
"grad_norm": 0.13528042945474514,
|
2310 |
+
"learning_rate": 1.4583333333333335e-06,
|
2311 |
+
"loss": 0.0164,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 4.285714285714286,
|
2316 |
+
"grad_norm": 0.13318619366466836,
|
2317 |
+
"learning_rate": 1.4322916666666667e-06,
|
2318 |
+
"loss": 0.0178,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.298701298701299,
|
2323 |
+
"grad_norm": 0.1147621867962911,
|
2324 |
+
"learning_rate": 1.40625e-06,
|
2325 |
+
"loss": 0.0146,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.311688311688312,
|
2330 |
+
"grad_norm": 0.1171420417701479,
|
2331 |
+
"learning_rate": 1.3802083333333335e-06,
|
2332 |
+
"loss": 0.0155,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 4.324675324675325,
|
2337 |
+
"grad_norm": 0.15069462003471634,
|
2338 |
+
"learning_rate": 1.3541666666666667e-06,
|
2339 |
+
"loss": 0.0169,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 4.337662337662338,
|
2344 |
+
"grad_norm": 0.13369044996596968,
|
2345 |
+
"learning_rate": 1.328125e-06,
|
2346 |
+
"loss": 0.02,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 4.35064935064935,
|
2351 |
+
"grad_norm": 0.1454995879584439,
|
2352 |
+
"learning_rate": 1.3020833333333335e-06,
|
2353 |
+
"loss": 0.0172,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 4.363636363636363,
|
2358 |
+
"grad_norm": 0.10957228964118756,
|
2359 |
+
"learning_rate": 1.2760416666666667e-06,
|
2360 |
+
"loss": 0.0146,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 4.376623376623376,
|
2365 |
+
"grad_norm": 0.13794250836423072,
|
2366 |
+
"learning_rate": 1.25e-06,
|
2367 |
+
"loss": 0.0186,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 4.3896103896103895,
|
2372 |
+
"grad_norm": 0.13155919219887055,
|
2373 |
+
"learning_rate": 1.2239583333333333e-06,
|
2374 |
+
"loss": 0.02,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 4.402597402597403,
|
2379 |
+
"grad_norm": 0.13527086701859414,
|
2380 |
+
"learning_rate": 1.197916666666667e-06,
|
2381 |
+
"loss": 0.0194,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 4.415584415584416,
|
2386 |
+
"grad_norm": 0.13783015873528512,
|
2387 |
+
"learning_rate": 1.1718750000000001e-06,
|
2388 |
+
"loss": 0.016,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 4.428571428571429,
|
2393 |
+
"grad_norm": 0.14817876036194735,
|
2394 |
+
"learning_rate": 1.1458333333333333e-06,
|
2395 |
+
"loss": 0.0202,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 4.441558441558442,
|
2400 |
+
"grad_norm": 0.13486669752884248,
|
2401 |
+
"learning_rate": 1.1197916666666667e-06,
|
2402 |
+
"loss": 0.0133,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 4.454545454545454,
|
2407 |
+
"grad_norm": 0.127193126169577,
|
2408 |
+
"learning_rate": 1.0937500000000001e-06,
|
2409 |
+
"loss": 0.0225,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 4.467532467532467,
|
2414 |
+
"grad_norm": 0.12716918562412002,
|
2415 |
+
"learning_rate": 1.0677083333333333e-06,
|
2416 |
+
"loss": 0.0161,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 4.48051948051948,
|
2421 |
+
"grad_norm": 0.12022862958417269,
|
2422 |
+
"learning_rate": 1.0416666666666667e-06,
|
2423 |
+
"loss": 0.0178,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 4.4935064935064934,
|
2428 |
+
"grad_norm": 0.11185223739581632,
|
2429 |
+
"learning_rate": 1.0156250000000001e-06,
|
2430 |
+
"loss": 0.0125,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 4.5064935064935066,
|
2435 |
+
"grad_norm": 0.12306589435982454,
|
2436 |
+
"learning_rate": 9.895833333333333e-07,
|
2437 |
+
"loss": 0.0177,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 4.51948051948052,
|
2442 |
+
"grad_norm": 0.1356833136264956,
|
2443 |
+
"learning_rate": 9.635416666666667e-07,
|
2444 |
+
"loss": 0.0225,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 4.532467532467533,
|
2449 |
+
"grad_norm": 0.12707329769968861,
|
2450 |
+
"learning_rate": 9.375000000000001e-07,
|
2451 |
+
"loss": 0.0144,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 4.545454545454545,
|
2456 |
+
"grad_norm": 0.13157923603380584,
|
2457 |
+
"learning_rate": 9.114583333333333e-07,
|
2458 |
+
"loss": 0.0246,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 4.558441558441558,
|
2463 |
+
"grad_norm": 0.11570507668897385,
|
2464 |
+
"learning_rate": 8.854166666666668e-07,
|
2465 |
+
"loss": 0.0136,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 4.571428571428571,
|
2470 |
+
"grad_norm": 0.1133212555134258,
|
2471 |
+
"learning_rate": 8.59375e-07,
|
2472 |
+
"loss": 0.016,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 4.584415584415584,
|
2477 |
+
"grad_norm": 0.11403791282962417,
|
2478 |
+
"learning_rate": 8.333333333333333e-07,
|
2479 |
+
"loss": 0.0173,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 4.597402597402597,
|
2484 |
+
"grad_norm": 0.1261694785889651,
|
2485 |
+
"learning_rate": 8.072916666666667e-07,
|
2486 |
+
"loss": 0.0164,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 4.6103896103896105,
|
2491 |
+
"grad_norm": 0.1647802144483293,
|
2492 |
+
"learning_rate": 7.8125e-07,
|
2493 |
+
"loss": 0.0194,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 4.623376623376624,
|
2498 |
+
"grad_norm": 0.12321856169539074,
|
2499 |
+
"learning_rate": 7.552083333333333e-07,
|
2500 |
+
"loss": 0.0154,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 4.636363636363637,
|
2505 |
+
"grad_norm": 0.11947597399789361,
|
2506 |
+
"learning_rate": 7.291666666666667e-07,
|
2507 |
+
"loss": 0.0128,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 4.64935064935065,
|
2512 |
+
"grad_norm": 0.12412634751604261,
|
2513 |
+
"learning_rate": 7.03125e-07,
|
2514 |
+
"loss": 0.0216,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 4.662337662337662,
|
2519 |
+
"grad_norm": 0.10648985459552097,
|
2520 |
+
"learning_rate": 6.770833333333333e-07,
|
2521 |
+
"loss": 0.016,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 4.675324675324675,
|
2526 |
+
"grad_norm": 0.10795065481176093,
|
2527 |
+
"learning_rate": 6.510416666666668e-07,
|
2528 |
+
"loss": 0.0149,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 4.688311688311688,
|
2533 |
+
"grad_norm": 0.13861642312992048,
|
2534 |
+
"learning_rate": 6.25e-07,
|
2535 |
+
"loss": 0.0197,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 4.701298701298701,
|
2540 |
+
"grad_norm": 0.12770449682753193,
|
2541 |
+
"learning_rate": 5.989583333333335e-07,
|
2542 |
+
"loss": 0.0221,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 4.714285714285714,
|
2547 |
+
"grad_norm": 0.10430014511475291,
|
2548 |
+
"learning_rate": 5.729166666666667e-07,
|
2549 |
+
"loss": 0.0129,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 4.7272727272727275,
|
2554 |
+
"grad_norm": 0.11966755573044428,
|
2555 |
+
"learning_rate": 5.468750000000001e-07,
|
2556 |
+
"loss": 0.0206,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 4.740259740259741,
|
2561 |
+
"grad_norm": 0.1275756019900647,
|
2562 |
+
"learning_rate": 5.208333333333334e-07,
|
2563 |
+
"loss": 0.0171,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 4.753246753246753,
|
2568 |
+
"grad_norm": 0.12808966422886903,
|
2569 |
+
"learning_rate": 4.947916666666667e-07,
|
2570 |
+
"loss": 0.0192,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 4.766233766233766,
|
2575 |
+
"grad_norm": 0.12149697378823344,
|
2576 |
+
"learning_rate": 4.6875000000000006e-07,
|
2577 |
+
"loss": 0.0143,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 4.779220779220779,
|
2582 |
+
"grad_norm": 0.1120503286114493,
|
2583 |
+
"learning_rate": 4.427083333333334e-07,
|
2584 |
+
"loss": 0.013,
|
2585 |
+
"step": 368
|
2586 |
+
}
|
2587 |
+
],
|
2588 |
+
"logging_steps": 1,
|
2589 |
+
"max_steps": 385,
|
2590 |
+
"num_input_tokens_seen": 0,
|
2591 |
+
"num_train_epochs": 5,
|
2592 |
+
"save_steps": 16,
|
2593 |
+
"stateful_callbacks": {
|
2594 |
+
"TrainerControl": {
|
2595 |
+
"args": {
|
2596 |
+
"should_epoch_stop": false,
|
2597 |
+
"should_evaluate": false,
|
2598 |
+
"should_log": false,
|
2599 |
+
"should_save": true,
|
2600 |
+
"should_training_stop": false
|
2601 |
+
},
|
2602 |
+
"attributes": {}
|
2603 |
+
}
|
2604 |
+
},
|
2605 |
+
"total_flos": 552596339163136.0,
|
2606 |
+
"train_batch_size": 1,
|
2607 |
+
"trial_name": null,
|
2608 |
+
"trial_params": null
|
2609 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bb408162d81ffdc86b051fce80a9ab93b4a23de9990617f1f2aefd0752e45c3
|
3 |
+
size 7224
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|