use customized code
Browse files- got_vision_b.py +0 -10
- modeling_GOT.py +74 -142
- render_tools.py +0 -25
- tokenization_qwen.py +4 -8
got_vision_b.py
CHANGED
@@ -129,7 +129,6 @@ class ImageEncoderViT(nn.Module):
|
|
129 |
LayerNorm2d(out_chans),
|
130 |
)
|
131 |
|
132 |
-
|
133 |
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
134 |
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
135 |
|
@@ -145,7 +144,6 @@ class ImageEncoderViT(nn.Module):
|
|
145 |
x = self.net_2(x)
|
146 |
x = self.net_3(x)
|
147 |
|
148 |
-
|
149 |
return x
|
150 |
|
151 |
|
@@ -272,7 +270,6 @@ class Attention(nn.Module):
|
|
272 |
|
273 |
return x
|
274 |
|
275 |
-
|
276 |
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
277 |
"""
|
278 |
Partition into non-overlapping windows with padding if needed.
|
@@ -296,7 +293,6 @@ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, T
|
|
296 |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
297 |
return windows, (Hp, Wp)
|
298 |
|
299 |
-
|
300 |
def window_unpartition(
|
301 |
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
302 |
) -> torch.Tensor:
|
@@ -321,7 +317,6 @@ def window_unpartition(
|
|
321 |
x = x[:, :H, :W, :].contiguous()
|
322 |
return x
|
323 |
|
324 |
-
|
325 |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
326 |
"""
|
327 |
Get relative positional embeddings according to the relative positions of
|
@@ -354,7 +349,6 @@ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor
|
|
354 |
|
355 |
return rel_pos_resized[relative_coords.long()]
|
356 |
|
357 |
-
|
358 |
def add_decomposed_rel_pos(
|
359 |
attn: torch.Tensor,
|
360 |
q: torch.Tensor,
|
@@ -425,8 +419,6 @@ class PatchEmbed(nn.Module):
|
|
425 |
x = x.permute(0, 2, 3, 1)
|
426 |
return x
|
427 |
|
428 |
-
|
429 |
-
|
430 |
def build_GOT_vit_b(checkpoint=None):
|
431 |
return _build_GOT_vision(
|
432 |
encoder_embed_dim=768,
|
@@ -436,7 +428,6 @@ def build_GOT_vit_b(checkpoint=None):
|
|
436 |
checkpoint=checkpoint,
|
437 |
)
|
438 |
|
439 |
-
|
440 |
def _build_GOT_vision(
|
441 |
encoder_embed_dim,
|
442 |
encoder_depth,
|
@@ -462,7 +453,6 @@ def _build_GOT_vision(
|
|
462 |
window_size=14,
|
463 |
out_chans=prompt_embed_dim,
|
464 |
)
|
465 |
-
|
466 |
|
467 |
return image_encoder
|
468 |
|
|
|
129 |
LayerNorm2d(out_chans),
|
130 |
)
|
131 |
|
|
|
132 |
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
133 |
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
134 |
|
|
|
144 |
x = self.net_2(x)
|
145 |
x = self.net_3(x)
|
146 |
|
|
|
147 |
return x
|
148 |
|
149 |
|
|
|
270 |
|
271 |
return x
|
272 |
|
|
|
273 |
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
274 |
"""
|
275 |
Partition into non-overlapping windows with padding if needed.
|
|
|
293 |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
294 |
return windows, (Hp, Wp)
|
295 |
|
|
|
296 |
def window_unpartition(
|
297 |
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
298 |
) -> torch.Tensor:
|
|
|
317 |
x = x[:, :H, :W, :].contiguous()
|
318 |
return x
|
319 |
|
|
|
320 |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
321 |
"""
|
322 |
Get relative positional embeddings according to the relative positions of
|
|
|
349 |
|
350 |
return rel_pos_resized[relative_coords.long()]
|
351 |
|
|
|
352 |
def add_decomposed_rel_pos(
|
353 |
attn: torch.Tensor,
|
354 |
q: torch.Tensor,
|
|
|
419 |
x = x.permute(0, 2, 3, 1)
|
420 |
return x
|
421 |
|
|
|
|
|
422 |
def build_GOT_vit_b(checkpoint=None):
|
423 |
return _build_GOT_vision(
|
424 |
encoder_embed_dim=768,
|
|
|
428 |
checkpoint=checkpoint,
|
429 |
)
|
430 |
|
|
|
431 |
def _build_GOT_vision(
|
432 |
encoder_embed_dim,
|
433 |
encoder_depth,
|
|
|
453 |
window_size=14,
|
454 |
out_chans=prompt_embed_dim,
|
455 |
)
|
|
|
456 |
|
457 |
return image_encoder
|
458 |
|
modeling_GOT.py
CHANGED
@@ -12,7 +12,6 @@ from .got_vision_b import build_GOT_vit_b
|
|
12 |
from torchvision import transforms
|
13 |
from torchvision.transforms.functional import InterpolationMode
|
14 |
import dataclasses
|
15 |
-
###
|
16 |
|
17 |
DEFAULT_IMAGE_TOKEN = "<image>"
|
18 |
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
@@ -20,6 +19,15 @@ DEFAULT_IM_START_TOKEN = '<img>'
|
|
20 |
DEFAULT_IM_END_TOKEN = '</img>'
|
21 |
|
22 |
from enum import auto, Enum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
class SeparatorStyle(Enum):
|
24 |
"""Different separator style."""
|
25 |
SINGLE = auto()
|
@@ -79,7 +87,6 @@ class Conversation:
|
|
79 |
else:
|
80 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
81 |
|
82 |
-
|
83 |
def append_message(self, role, message):
|
84 |
self.messages.append([role, message])
|
85 |
|
@@ -94,7 +101,6 @@ class Conversation:
|
|
94 |
sep2=self.sep2)
|
95 |
|
96 |
|
97 |
-
|
98 |
class KeywordsStoppingCriteria(StoppingCriteria):
|
99 |
def __init__(self, keywords, tokenizer, input_ids):
|
100 |
self.keywords = keywords
|
@@ -116,7 +122,7 @@ class KeywordsStoppingCriteria(StoppingCriteria):
|
|
116 |
if keyword in outputs:
|
117 |
return True
|
118 |
return False
|
119 |
-
|
120 |
|
121 |
class GOTImageEvalProcessor:
|
122 |
def __init__(self, image_size=384, mean=None, std=None):
|
@@ -140,7 +146,6 @@ class GOTImageEvalProcessor:
|
|
140 |
return self.transform(item)
|
141 |
|
142 |
|
143 |
-
|
144 |
class GOTConfig(Qwen2Config):
|
145 |
model_type = "GOT"
|
146 |
|
@@ -155,7 +160,6 @@ class GOTQwenModel(Qwen2Model):
|
|
155 |
|
156 |
self.mm_projector_vary = nn.Linear(1024, 1024)
|
157 |
|
158 |
-
|
159 |
def initialize_vision_modules(
|
160 |
self,
|
161 |
vision_tower,
|
@@ -167,14 +171,12 @@ class GOTQwenModel(Qwen2Model):
|
|
167 |
device="cuda"
|
168 |
):
|
169 |
|
170 |
-
|
171 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
172 |
-
|
173 |
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
174 |
|
175 |
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
176 |
|
177 |
-
|
178 |
image_token_len = 256
|
179 |
|
180 |
self.config.vision_tower = vision_tower
|
@@ -184,13 +186,12 @@ class GOTQwenModel(Qwen2Model):
|
|
184 |
|
185 |
self.config.vision_select_layer = vision_select_layer
|
186 |
self.config.freeze_vision_tower = freeze_vision_tower
|
187 |
-
|
188 |
return dict(
|
189 |
image_processor_high=image_processor_high,
|
190 |
image_token_len=image_token_len,
|
191 |
)
|
192 |
-
|
193 |
-
|
194 |
def forward(
|
195 |
self,
|
196 |
input_ids: torch.LongTensor = None,
|
@@ -205,7 +206,6 @@ class GOTQwenModel(Qwen2Model):
|
|
205 |
return_dict: Optional[bool] = None,
|
206 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
207 |
|
208 |
-
# HACK: replace back original embeddings for LLaVA pretraining
|
209 |
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
210 |
if orig_embeds_params is not None:
|
211 |
with torch.no_grad():
|
@@ -214,10 +214,8 @@ class GOTQwenModel(Qwen2Model):
|
|
214 |
if inputs_embeds is None:
|
215 |
inputs_embeds = self.embed_tokens(input_ids)
|
216 |
|
217 |
-
|
218 |
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
219 |
|
220 |
-
|
221 |
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
222 |
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
223 |
|
@@ -232,9 +230,9 @@ class GOTQwenModel(Qwen2Model):
|
|
232 |
im_start_token = 151857
|
233 |
|
234 |
im_end_token = 151858
|
235 |
-
|
236 |
image_features = []
|
237 |
-
|
238 |
for image in images:
|
239 |
P, C, H, W = image.shape
|
240 |
if P == 1:
|
@@ -249,7 +247,7 @@ class GOTQwenModel(Qwen2Model):
|
|
249 |
image_patches_features = []
|
250 |
for image_patch in image_patches:
|
251 |
image_p = torch.stack([image_patch])
|
252 |
-
|
253 |
with torch.set_grad_enabled(False):
|
254 |
cnn_feature_p = vision_tower_high(image_p)
|
255 |
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
@@ -258,7 +256,6 @@ class GOTQwenModel(Qwen2Model):
|
|
258 |
image_feature = torch.cat(image_patches_features, dim=1)
|
259 |
image_features.append(image_feature)
|
260 |
|
261 |
-
|
262 |
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
263 |
dummy_image_features = dummy_image_features_2
|
264 |
use_im_start_end = True
|
@@ -272,7 +269,7 @@ class GOTQwenModel(Qwen2Model):
|
|
272 |
if use_im_start_end:
|
273 |
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
274 |
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
275 |
-
|
276 |
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
277 |
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
278 |
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
@@ -280,7 +277,7 @@ class GOTQwenModel(Qwen2Model):
|
|
280 |
|
281 |
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
282 |
raise ValueError("The image end token should follow the image start token.")
|
283 |
-
|
284 |
cur_input_embeds = torch.cat(
|
285 |
(
|
286 |
cur_input_embeds[:image_start_token_pos+1],
|
@@ -290,7 +287,6 @@ class GOTQwenModel(Qwen2Model):
|
|
290 |
dim=0
|
291 |
)
|
292 |
|
293 |
-
|
294 |
new_input_embeds.append(cur_input_embeds)
|
295 |
else:
|
296 |
raise NotImplementedError
|
@@ -305,10 +301,8 @@ class GOTQwenModel(Qwen2Model):
|
|
305 |
)
|
306 |
|
307 |
|
308 |
-
|
309 |
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
310 |
config_class = GOTConfig
|
311 |
-
# supports_gradient_checkpointing = True
|
312 |
|
313 |
def __init__(self, config):
|
314 |
super(Qwen2ForCausalLM, self).__init__(config)
|
@@ -317,7 +311,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
317 |
self.vocab_size = config.vocab_size
|
318 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
319 |
|
320 |
-
# Initialize weights and apply final processing
|
321 |
self.post_init()
|
322 |
|
323 |
def get_model(self):
|
@@ -336,7 +329,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
336 |
output_hidden_states: Optional[bool] = None,
|
337 |
images: Optional[torch.FloatTensor] = None,
|
338 |
return_dict: Optional[bool] = None,
|
339 |
-
|
340 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
341 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
342 |
output_hidden_states = (
|
@@ -362,18 +355,13 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
362 |
logits = self.lm_head(hidden_states)
|
363 |
logits = logits.float()
|
364 |
|
365 |
-
# logits
|
366 |
-
|
367 |
loss = None
|
368 |
if labels is not None:
|
369 |
-
# Shift so that tokens < n predict n
|
370 |
shift_logits = logits[..., :-1, :].contiguous()
|
371 |
shift_labels = labels[..., 1:].contiguous()
|
372 |
-
# Flatten the tokens
|
373 |
loss_fct = CrossEntropyLoss()
|
374 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
375 |
shift_labels = shift_labels.view(-1)
|
376 |
-
# Enable model parallelism
|
377 |
shift_labels = shift_labels.to(shift_logits.device)
|
378 |
loss = loss_fct(shift_logits, shift_labels)
|
379 |
|
@@ -389,63 +377,49 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
389 |
attentions=outputs.attentions,
|
390 |
)
|
391 |
|
392 |
-
|
393 |
def prepare_inputs_for_generation(
|
394 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
395 |
):
|
396 |
-
|
|
|
|
|
397 |
if past_key_values is not None:
|
398 |
if isinstance(past_key_values, Cache):
|
399 |
cache_length = past_key_values.get_seq_length()
|
400 |
-
|
401 |
-
|
|
|
402 |
else:
|
403 |
-
cache_length =
|
|
|
404 |
max_cache_length = None
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
elif past_length < input_ids.shape[1]:
|
415 |
-
input_ids = input_ids[:, past_length:]
|
416 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
417 |
-
|
418 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
419 |
-
if (
|
420 |
-
max_cache_length is not None
|
421 |
-
and attention_mask is not None
|
422 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
423 |
-
):
|
424 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
425 |
|
426 |
position_ids = kwargs.get("position_ids", None)
|
427 |
if attention_mask is not None and position_ids is None:
|
428 |
-
# create position_ids on the fly for batch generation
|
429 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
430 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
431 |
if past_key_values:
|
432 |
-
position_ids = position_ids[:, -input_ids.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
435 |
-
if inputs_embeds is not None and past_key_values is None:
|
436 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
437 |
-
else:
|
438 |
-
model_inputs = {"input_ids": input_ids}
|
439 |
-
|
440 |
-
model_inputs.update(
|
441 |
-
{
|
442 |
-
"position_ids": position_ids,
|
443 |
-
"past_key_values": past_key_values,
|
444 |
-
"use_cache": kwargs.get("use_cache"),
|
445 |
-
"attention_mask": attention_mask,
|
446 |
-
"images": kwargs.get("images", None),
|
447 |
-
}
|
448 |
-
)
|
449 |
return model_inputs
|
450 |
|
451 |
def initialize_vision_tokenizer(
|
@@ -457,7 +431,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
457 |
):
|
458 |
config = self.get_model().config
|
459 |
|
460 |
-
|
461 |
self.resize_token_embeddings(len(tokenizer))
|
462 |
|
463 |
config.im_patch_token = 151859
|
@@ -488,7 +461,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
488 |
|
489 |
self.disable_torch_init()
|
490 |
|
491 |
-
|
492 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
493 |
|
494 |
use_im_start_end = True
|
@@ -501,7 +473,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
501 |
image = self.load_image(image_file)
|
502 |
|
503 |
w, h = image.size
|
504 |
-
|
505 |
if ocr_type == 'format':
|
506 |
qs = 'OCR with format: '
|
507 |
else:
|
@@ -533,10 +505,9 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
533 |
else:
|
534 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
535 |
|
536 |
-
|
537 |
conv_mpt = Conversation(
|
538 |
system="""<|im_start|>system
|
539 |
-
|
540 |
# system = None,
|
541 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
542 |
version="mpt",
|
@@ -566,7 +537,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
566 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
567 |
|
568 |
if stream_flag:
|
569 |
-
with torch.autocast("cuda", dtype=
|
570 |
output_ids = self.generate(
|
571 |
input_ids,
|
572 |
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
@@ -578,7 +549,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
578 |
stopping_criteria=[stopping_criteria]
|
579 |
)
|
580 |
else:
|
581 |
-
with torch.autocast("cuda", dtype=
|
582 |
output_ids = self.generate(
|
583 |
input_ids,
|
584 |
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
@@ -589,9 +560,9 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
589 |
max_new_tokens=4096,
|
590 |
stopping_criteria=[stopping_criteria]
|
591 |
)
|
592 |
-
|
593 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
594 |
-
|
595 |
if outputs.endswith(stop_str):
|
596 |
outputs = outputs[:-len(stop_str)]
|
597 |
outputs = outputs.strip()
|
@@ -599,24 +570,13 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
599 |
|
600 |
if render:
|
601 |
print('==============rendering===============')
|
602 |
-
from .render_tools import
|
603 |
|
604 |
if '**kern' in outputs:
|
605 |
-
|
606 |
-
tk = verovio.toolkit()
|
607 |
-
tk.loadData(outputs)
|
608 |
-
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
609 |
-
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
610 |
-
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
611 |
-
tk.getPageCount()
|
612 |
-
svg = tk.renderToSVG()
|
613 |
-
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
614 |
-
|
615 |
-
svg_to_html(svg, save_render_file)
|
616 |
|
617 |
if ocr_type == 'format' and '**kern' not in outputs:
|
618 |
|
619 |
-
|
620 |
if '\\begin{tikzpicture}' not in outputs:
|
621 |
html_path_2 = save_render_file
|
622 |
right_num = outputs.count('\\right')
|
@@ -625,16 +585,14 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
625 |
if right_num != left_num:
|
626 |
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
627 |
|
628 |
-
|
629 |
outputs = outputs.replace('"', '``').replace('$', '')
|
630 |
|
631 |
outputs_list = outputs.split('\n')
|
632 |
gt= ''
|
633 |
for out in outputs_list:
|
634 |
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
635 |
-
|
636 |
-
gt = gt[:-2]
|
637 |
|
|
|
638 |
|
639 |
lines = content_mmd_to_html
|
640 |
lines = lines.split("const text =")
|
@@ -652,7 +610,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
652 |
out = out[:-1]
|
653 |
if out is None:
|
654 |
break
|
655 |
-
|
656 |
if out:
|
657 |
if out[-1] != ';':
|
658 |
gt += out[:-1] + ';\n'
|
@@ -661,7 +619,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
661 |
else:
|
662 |
gt += out + '\n'
|
663 |
|
664 |
-
|
665 |
lines = tik_html
|
666 |
lines = lines.split("const text =")
|
667 |
new_web = lines[0] + gt + lines[1]
|
@@ -671,7 +628,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
671 |
return response_str
|
672 |
|
673 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
674 |
-
|
675 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
676 |
best_ratio_diff = float('inf')
|
677 |
best_ratio = (1, 1)
|
@@ -685,30 +642,24 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
685 |
elif ratio_diff == best_ratio_diff:
|
686 |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
687 |
best_ratio = ratio
|
688 |
-
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
689 |
return best_ratio
|
690 |
-
|
691 |
orig_width, orig_height = image.size
|
692 |
aspect_ratio = orig_width / orig_height
|
693 |
|
694 |
-
# calculate the existing image aspect ratio
|
695 |
target_ratios = set(
|
696 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
697 |
i * j <= max_num and i * j >= min_num)
|
698 |
-
|
699 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
700 |
|
701 |
-
# find the closest aspect ratio to the target
|
702 |
target_aspect_ratio = find_closest_aspect_ratio(
|
703 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
704 |
|
705 |
-
# print(target_aspect_ratio)
|
706 |
-
# calculate the target width and height
|
707 |
target_width = image_size * target_aspect_ratio[0]
|
708 |
target_height = image_size * target_aspect_ratio[1]
|
709 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
710 |
|
711 |
-
# resize the image
|
712 |
resized_img = image.resize((target_width, target_height))
|
713 |
processed_images = []
|
714 |
for i in range(blocks):
|
@@ -718,7 +669,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
718 |
((i % (target_width // image_size)) + 1) * image_size,
|
719 |
((i // (target_width // image_size)) + 1) * image_size
|
720 |
)
|
721 |
-
|
722 |
split_img = resized_img.crop(box)
|
723 |
processed_images.append(split_img)
|
724 |
assert len(processed_images) == blocks
|
@@ -727,40 +678,26 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
727 |
processed_images.append(thumbnail_img)
|
728 |
return processed_images
|
729 |
|
730 |
-
|
731 |
-
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
732 |
-
# Model
|
733 |
self.disable_torch_init()
|
734 |
multi_page=False
|
735 |
|
736 |
-
|
737 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
738 |
|
739 |
use_im_start_end = True
|
740 |
|
741 |
-
|
742 |
image_token_len = 256
|
743 |
|
744 |
image_list = []
|
745 |
|
746 |
-
# if len(image_file_list)>1:
|
747 |
-
# multi_page = True
|
748 |
-
|
749 |
if multi_page:
|
750 |
qs = 'OCR with format across multi pages: '
|
751 |
-
# only for png files
|
752 |
-
# import glob
|
753 |
-
# from natsort import natsorted
|
754 |
-
# patches = glob.glob(image_file + '/*png')
|
755 |
patches = image_file
|
756 |
-
# patches = natsorted(patches)
|
757 |
sub_images = []
|
758 |
for sub_image in patches:
|
759 |
sub_images.append(self.load_image(sub_image))
|
760 |
|
761 |
ll = len(patches)
|
762 |
-
# print(patches)
|
763 |
-
# print("len ll: ", ll)
|
764 |
|
765 |
else:
|
766 |
if ocr_type == 'format':
|
@@ -778,21 +715,16 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
778 |
image_tensor_1 = image_processor_high(image)
|
779 |
image_list.append(image_tensor_1)
|
780 |
|
781 |
-
|
782 |
image_list = torch.stack(image_list)
|
783 |
|
784 |
-
print('====new images batch size======: \n',image_list.shape)
|
785 |
-
|
786 |
-
|
787 |
if use_im_start_end:
|
788 |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
789 |
else:
|
790 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
791 |
|
792 |
-
|
793 |
conv_mpt = Conversation(
|
794 |
system="""<|im_start|>system
|
795 |
-
|
796 |
# system = None,
|
797 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
798 |
version="mpt",
|
@@ -811,8 +743,8 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
811 |
print(prompt)
|
812 |
|
813 |
inputs = tokenizer([prompt])
|
814 |
-
|
815 |
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
|
|
816 |
|
817 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
818 |
keywords = [stop_str]
|
@@ -820,32 +752,33 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
820 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
821 |
|
822 |
if stream_flag:
|
823 |
-
with torch.autocast("cuda", dtype=
|
824 |
output_ids = self.generate(
|
825 |
input_ids,
|
826 |
images=[image_list.half().cuda()],
|
|
|
827 |
do_sample=False,
|
828 |
-
num_beams = 1,
|
829 |
-
# no_repeat_ngram_size = 20,
|
830 |
streamer=streamer,
|
|
|
831 |
max_new_tokens=4096,
|
832 |
stopping_criteria=[stopping_criteria]
|
833 |
-
|
|
|
834 |
else:
|
835 |
-
with torch.autocast("cuda", dtype=
|
836 |
output_ids = self.generate(
|
837 |
input_ids,
|
838 |
images=[image_list.half().cuda()],
|
|
|
839 |
do_sample=False,
|
840 |
-
num_beams = 1,
|
841 |
-
# no_repeat_ngram_size = 20,
|
842 |
# streamer=streamer,
|
|
|
843 |
max_new_tokens=4096,
|
844 |
stopping_criteria=[stopping_criteria]
|
845 |
-
|
846 |
|
847 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
848 |
-
|
849 |
if outputs.endswith(stop_str):
|
850 |
outputs = outputs[:-len(stop_str)]
|
851 |
outputs = outputs.strip()
|
@@ -861,14 +794,13 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
861 |
if right_num != left_num:
|
862 |
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
863 |
|
864 |
-
|
865 |
outputs = outputs.replace('"', '``').replace('$', '')
|
866 |
|
867 |
outputs_list = outputs.split('\n')
|
868 |
gt= ''
|
869 |
for out in outputs_list:
|
870 |
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
871 |
-
|
872 |
gt = gt[:-2]
|
873 |
|
874 |
lines = content_mmd_to_html
|
|
|
12 |
from torchvision import transforms
|
13 |
from torchvision.transforms.functional import InterpolationMode
|
14 |
import dataclasses
|
|
|
15 |
|
16 |
DEFAULT_IMAGE_TOKEN = "<image>"
|
17 |
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
|
|
19 |
DEFAULT_IM_END_TOKEN = '</img>'
|
20 |
|
21 |
from enum import auto, Enum
|
22 |
+
|
23 |
+
def has_bfloat16_support():
|
24 |
+
if not torch.cuda.is_available():
|
25 |
+
return False
|
26 |
+
capability = torch.cuda.get_device_capability()
|
27 |
+
return capability >= (8, 0)
|
28 |
+
|
29 |
+
SUPPORTED_DTYPE = torch.bfloat16 if has_bfloat16_support() else torch.float16
|
30 |
+
|
31 |
class SeparatorStyle(Enum):
|
32 |
"""Different separator style."""
|
33 |
SINGLE = auto()
|
|
|
87 |
else:
|
88 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
89 |
|
|
|
90 |
def append_message(self, role, message):
|
91 |
self.messages.append([role, message])
|
92 |
|
|
|
101 |
sep2=self.sep2)
|
102 |
|
103 |
|
|
|
104 |
class KeywordsStoppingCriteria(StoppingCriteria):
|
105 |
def __init__(self, keywords, tokenizer, input_ids):
|
106 |
self.keywords = keywords
|
|
|
122 |
if keyword in outputs:
|
123 |
return True
|
124 |
return False
|
125 |
+
|
126 |
|
127 |
class GOTImageEvalProcessor:
|
128 |
def __init__(self, image_size=384, mean=None, std=None):
|
|
|
146 |
return self.transform(item)
|
147 |
|
148 |
|
|
|
149 |
class GOTConfig(Qwen2Config):
|
150 |
model_type = "GOT"
|
151 |
|
|
|
160 |
|
161 |
self.mm_projector_vary = nn.Linear(1024, 1024)
|
162 |
|
|
|
163 |
def initialize_vision_modules(
|
164 |
self,
|
165 |
vision_tower,
|
|
|
171 |
device="cuda"
|
172 |
):
|
173 |
|
|
|
174 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
175 |
+
|
176 |
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
177 |
|
178 |
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
179 |
|
|
|
180 |
image_token_len = 256
|
181 |
|
182 |
self.config.vision_tower = vision_tower
|
|
|
186 |
|
187 |
self.config.vision_select_layer = vision_select_layer
|
188 |
self.config.freeze_vision_tower = freeze_vision_tower
|
189 |
+
|
190 |
return dict(
|
191 |
image_processor_high=image_processor_high,
|
192 |
image_token_len=image_token_len,
|
193 |
)
|
194 |
+
|
|
|
195 |
def forward(
|
196 |
self,
|
197 |
input_ids: torch.LongTensor = None,
|
|
|
206 |
return_dict: Optional[bool] = None,
|
207 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
208 |
|
|
|
209 |
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
210 |
if orig_embeds_params is not None:
|
211 |
with torch.no_grad():
|
|
|
214 |
if inputs_embeds is None:
|
215 |
inputs_embeds = self.embed_tokens(input_ids)
|
216 |
|
|
|
217 |
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
218 |
|
|
|
219 |
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
220 |
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
221 |
|
|
|
230 |
im_start_token = 151857
|
231 |
|
232 |
im_end_token = 151858
|
233 |
+
|
234 |
image_features = []
|
235 |
+
|
236 |
for image in images:
|
237 |
P, C, H, W = image.shape
|
238 |
if P == 1:
|
|
|
247 |
image_patches_features = []
|
248 |
for image_patch in image_patches:
|
249 |
image_p = torch.stack([image_patch])
|
250 |
+
|
251 |
with torch.set_grad_enabled(False):
|
252 |
cnn_feature_p = vision_tower_high(image_p)
|
253 |
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
|
|
256 |
image_feature = torch.cat(image_patches_features, dim=1)
|
257 |
image_features.append(image_feature)
|
258 |
|
|
|
259 |
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
260 |
dummy_image_features = dummy_image_features_2
|
261 |
use_im_start_end = True
|
|
|
269 |
if use_im_start_end:
|
270 |
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
271 |
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
272 |
+
|
273 |
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
274 |
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
275 |
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
|
|
277 |
|
278 |
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
279 |
raise ValueError("The image end token should follow the image start token.")
|
280 |
+
|
281 |
cur_input_embeds = torch.cat(
|
282 |
(
|
283 |
cur_input_embeds[:image_start_token_pos+1],
|
|
|
287 |
dim=0
|
288 |
)
|
289 |
|
|
|
290 |
new_input_embeds.append(cur_input_embeds)
|
291 |
else:
|
292 |
raise NotImplementedError
|
|
|
301 |
)
|
302 |
|
303 |
|
|
|
304 |
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
305 |
config_class = GOTConfig
|
|
|
306 |
|
307 |
def __init__(self, config):
|
308 |
super(Qwen2ForCausalLM, self).__init__(config)
|
|
|
311 |
self.vocab_size = config.vocab_size
|
312 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
313 |
|
|
|
314 |
self.post_init()
|
315 |
|
316 |
def get_model(self):
|
|
|
329 |
output_hidden_states: Optional[bool] = None,
|
330 |
images: Optional[torch.FloatTensor] = None,
|
331 |
return_dict: Optional[bool] = None,
|
332 |
+
|
333 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
334 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
335 |
output_hidden_states = (
|
|
|
355 |
logits = self.lm_head(hidden_states)
|
356 |
logits = logits.float()
|
357 |
|
|
|
|
|
358 |
loss = None
|
359 |
if labels is not None:
|
|
|
360 |
shift_logits = logits[..., :-1, :].contiguous()
|
361 |
shift_labels = labels[..., 1:].contiguous()
|
|
|
362 |
loss_fct = CrossEntropyLoss()
|
363 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
364 |
shift_labels = shift_labels.view(-1)
|
|
|
365 |
shift_labels = shift_labels.to(shift_logits.device)
|
366 |
loss = loss_fct(shift_logits, shift_labels)
|
367 |
|
|
|
377 |
attentions=outputs.attentions,
|
378 |
)
|
379 |
|
|
|
380 |
def prepare_inputs_for_generation(
|
381 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
382 |
):
|
383 |
+
if attention_mask is None:
|
384 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device)
|
385 |
+
|
386 |
if past_key_values is not None:
|
387 |
if isinstance(past_key_values, Cache):
|
388 |
cache_length = past_key_values.get_seq_length()
|
389 |
+
current_length = cache_length
|
390 |
+
max_cache_shape = past_key_values.get_max_cache_shape()
|
391 |
+
max_cache_length = max_cache_shape[1] if max_cache_shape else None
|
392 |
else:
|
393 |
+
cache_length = past_key_values[0][0].shape[2]
|
394 |
+
current_length = cache_length
|
395 |
max_cache_length = None
|
396 |
|
397 |
+
if attention_mask.shape[1] > input_ids.shape[1]:
|
398 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - cache_length):]
|
399 |
+
elif cache_length < input_ids.shape[1]:
|
400 |
+
input_ids = input_ids[:, cache_length:]
|
401 |
+
|
402 |
+
if max_cache_length is not None and attention_mask is not None:
|
403 |
+
if cache_length + input_ids.shape[1] > max_cache_length:
|
404 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
position_ids = kwargs.get("position_ids", None)
|
407 |
if attention_mask is not None and position_ids is None:
|
|
|
408 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
409 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
410 |
if past_key_values:
|
411 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
412 |
+
|
413 |
+
model_inputs = {
|
414 |
+
"input_ids": input_ids if inputs_embeds is None or past_key_values is not None else None,
|
415 |
+
"inputs_embeds": inputs_embeds if past_key_values is None else None,
|
416 |
+
"past_key_values": past_key_values,
|
417 |
+
"position_ids": position_ids,
|
418 |
+
"attention_mask": attention_mask,
|
419 |
+
"images": kwargs.get("images", None),
|
420 |
+
"use_cache": kwargs.get("use_cache", True)
|
421 |
+
}
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
return model_inputs
|
424 |
|
425 |
def initialize_vision_tokenizer(
|
|
|
431 |
):
|
432 |
config = self.get_model().config
|
433 |
|
|
|
434 |
self.resize_token_embeddings(len(tokenizer))
|
435 |
|
436 |
config.im_patch_token = 151859
|
|
|
461 |
|
462 |
self.disable_torch_init()
|
463 |
|
|
|
464 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
465 |
|
466 |
use_im_start_end = True
|
|
|
473 |
image = self.load_image(image_file)
|
474 |
|
475 |
w, h = image.size
|
476 |
+
|
477 |
if ocr_type == 'format':
|
478 |
qs = 'OCR with format: '
|
479 |
else:
|
|
|
505 |
else:
|
506 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
507 |
|
|
|
508 |
conv_mpt = Conversation(
|
509 |
system="""<|im_start|>system
|
510 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
511 |
# system = None,
|
512 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
513 |
version="mpt",
|
|
|
537 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
538 |
|
539 |
if stream_flag:
|
540 |
+
with torch.autocast("cuda", dtype=SUPPORTED_DTYPE):
|
541 |
output_ids = self.generate(
|
542 |
input_ids,
|
543 |
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
|
|
549 |
stopping_criteria=[stopping_criteria]
|
550 |
)
|
551 |
else:
|
552 |
+
with torch.autocast("cuda", dtype=SUPPORTED_DTYPE):
|
553 |
output_ids = self.generate(
|
554 |
input_ids,
|
555 |
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
|
|
560 |
max_new_tokens=4096,
|
561 |
stopping_criteria=[stopping_criteria]
|
562 |
)
|
563 |
+
|
564 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
565 |
+
|
566 |
if outputs.endswith(stop_str):
|
567 |
outputs = outputs[:-len(stop_str)]
|
568 |
outputs = outputs.strip()
|
|
|
570 |
|
571 |
if render:
|
572 |
print('==============rendering===============')
|
573 |
+
from .render_tools import content_mmd_to_html, tik_html, translation_table
|
574 |
|
575 |
if '**kern' in outputs:
|
576 |
+
print("Musical notation detected but Verovio rendering is disabled")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
if ocr_type == 'format' and '**kern' not in outputs:
|
579 |
|
|
|
580 |
if '\\begin{tikzpicture}' not in outputs:
|
581 |
html_path_2 = save_render_file
|
582 |
right_num = outputs.count('\\right')
|
|
|
585 |
if right_num != left_num:
|
586 |
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
587 |
|
|
|
588 |
outputs = outputs.replace('"', '``').replace('$', '')
|
589 |
|
590 |
outputs_list = outputs.split('\n')
|
591 |
gt= ''
|
592 |
for out in outputs_list:
|
593 |
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
|
|
|
|
594 |
|
595 |
+
gt = gt[:-2]
|
596 |
|
597 |
lines = content_mmd_to_html
|
598 |
lines = lines.split("const text =")
|
|
|
610 |
out = out[:-1]
|
611 |
if out is None:
|
612 |
break
|
613 |
+
|
614 |
if out:
|
615 |
if out[-1] != ';':
|
616 |
gt += out[:-1] + ';\n'
|
|
|
619 |
else:
|
620 |
gt += out + '\n'
|
621 |
|
|
|
622 |
lines = tik_html
|
623 |
lines = lines.split("const text =")
|
624 |
new_web = lines[0] + gt + lines[1]
|
|
|
628 |
return response_str
|
629 |
|
630 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
631 |
+
|
632 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
633 |
best_ratio_diff = float('inf')
|
634 |
best_ratio = (1, 1)
|
|
|
642 |
elif ratio_diff == best_ratio_diff:
|
643 |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
644 |
best_ratio = ratio
|
|
|
645 |
return best_ratio
|
646 |
+
|
647 |
orig_width, orig_height = image.size
|
648 |
aspect_ratio = orig_width / orig_height
|
649 |
|
|
|
650 |
target_ratios = set(
|
651 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
652 |
i * j <= max_num and i * j >= min_num)
|
653 |
+
|
654 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
655 |
|
|
|
656 |
target_aspect_ratio = find_closest_aspect_ratio(
|
657 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
658 |
|
|
|
|
|
659 |
target_width = image_size * target_aspect_ratio[0]
|
660 |
target_height = image_size * target_aspect_ratio[1]
|
661 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
662 |
|
|
|
663 |
resized_img = image.resize((target_width, target_height))
|
664 |
processed_images = []
|
665 |
for i in range(blocks):
|
|
|
669 |
((i % (target_width // image_size)) + 1) * image_size,
|
670 |
((i // (target_width // image_size)) + 1) * image_size
|
671 |
)
|
672 |
+
|
673 |
split_img = resized_img.crop(box)
|
674 |
processed_images.append(split_img)
|
675 |
assert len(processed_images) == blocks
|
|
|
678 |
processed_images.append(thumbnail_img)
|
679 |
return processed_images
|
680 |
|
681 |
+
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag=False):
|
|
|
|
|
682 |
self.disable_torch_init()
|
683 |
multi_page=False
|
684 |
|
|
|
685 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
686 |
|
687 |
use_im_start_end = True
|
688 |
|
|
|
689 |
image_token_len = 256
|
690 |
|
691 |
image_list = []
|
692 |
|
|
|
|
|
|
|
693 |
if multi_page:
|
694 |
qs = 'OCR with format across multi pages: '
|
|
|
|
|
|
|
|
|
695 |
patches = image_file
|
|
|
696 |
sub_images = []
|
697 |
for sub_image in patches:
|
698 |
sub_images.append(self.load_image(sub_image))
|
699 |
|
700 |
ll = len(patches)
|
|
|
|
|
701 |
|
702 |
else:
|
703 |
if ocr_type == 'format':
|
|
|
715 |
image_tensor_1 = image_processor_high(image)
|
716 |
image_list.append(image_tensor_1)
|
717 |
|
|
|
718 |
image_list = torch.stack(image_list)
|
719 |
|
|
|
|
|
|
|
720 |
if use_im_start_end:
|
721 |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
722 |
else:
|
723 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
724 |
|
|
|
725 |
conv_mpt = Conversation(
|
726 |
system="""<|im_start|>system
|
727 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
728 |
# system = None,
|
729 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
730 |
version="mpt",
|
|
|
743 |
print(prompt)
|
744 |
|
745 |
inputs = tokenizer([prompt])
|
|
|
746 |
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
747 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device)
|
748 |
|
749 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
750 |
keywords = [stop_str]
|
|
|
752 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
753 |
|
754 |
if stream_flag:
|
755 |
+
with torch.autocast("cuda", dtype=SUPPORTED_DTYPE):
|
756 |
output_ids = self.generate(
|
757 |
input_ids,
|
758 |
images=[image_list.half().cuda()],
|
759 |
+
attention_mask=attention_mask,
|
760 |
do_sample=False,
|
|
|
|
|
761 |
streamer=streamer,
|
762 |
+
num_beams=1,
|
763 |
max_new_tokens=4096,
|
764 |
stopping_criteria=[stopping_criteria]
|
765 |
+
)
|
766 |
+
|
767 |
else:
|
768 |
+
with torch.autocast("cuda", dtype=SUPPORTED_DTYPE):
|
769 |
output_ids = self.generate(
|
770 |
input_ids,
|
771 |
images=[image_list.half().cuda()],
|
772 |
+
attention_mask=attention_mask,
|
773 |
do_sample=False,
|
|
|
|
|
774 |
# streamer=streamer,
|
775 |
+
num_beams=1,
|
776 |
max_new_tokens=4096,
|
777 |
stopping_criteria=[stopping_criteria]
|
778 |
+
)
|
779 |
|
780 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
781 |
+
|
782 |
if outputs.endswith(stop_str):
|
783 |
outputs = outputs[:-len(stop_str)]
|
784 |
outputs = outputs.strip()
|
|
|
794 |
if right_num != left_num:
|
795 |
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
796 |
|
|
|
797 |
outputs = outputs.replace('"', '``').replace('$', '')
|
798 |
|
799 |
outputs_list = outputs.split('\n')
|
800 |
gt= ''
|
801 |
for out in outputs_list:
|
802 |
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
803 |
+
|
804 |
gt = gt[:-2]
|
805 |
|
806 |
lines = content_mmd_to_html
|
render_tools.py
CHANGED
@@ -5,29 +5,6 @@ punctuation_dict = {
|
|
5 |
|
6 |
}
|
7 |
translation_table = str.maketrans(punctuation_dict)
|
8 |
-
|
9 |
-
def svg_to_html(svg_content, output_filename):
|
10 |
-
|
11 |
-
html_content = f"""
|
12 |
-
<!DOCTYPE html>
|
13 |
-
<html lang="en">
|
14 |
-
<head>
|
15 |
-
<meta charset="UTF-8">
|
16 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
17 |
-
<title>SVG Embedded in HTML</title>
|
18 |
-
</head>
|
19 |
-
<body>
|
20 |
-
<svg width="2100" height="15000" xmlns="http://www.w3.org/2000/svg">
|
21 |
-
{svg_content}
|
22 |
-
</svg>
|
23 |
-
</body>
|
24 |
-
</html>
|
25 |
-
"""
|
26 |
-
|
27 |
-
with open(output_filename, 'w') as file:
|
28 |
-
file.write(html_content)
|
29 |
-
|
30 |
-
|
31 |
|
32 |
content_mmd_to_html = """<!DOCTYPE html>
|
33 |
<html lang="en" data-lt-installed="true"><head>
|
@@ -71,7 +48,6 @@ content_mmd_to_html = """<!DOCTYPE html>
|
|
71 |
"""
|
72 |
|
73 |
|
74 |
-
|
75 |
tik_html = """
|
76 |
<!DOCTYPE html>
|
77 |
|
@@ -92,5 +68,4 @@ const text =
|
|
92 |
</html>"""
|
93 |
|
94 |
|
95 |
-
|
96 |
# print(tik_html)
|
|
|
5 |
|
6 |
}
|
7 |
translation_table = str.maketrans(punctuation_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
content_mmd_to_html = """<!DOCTYPE html>
|
10 |
<html lang="en" data-lt-installed="true"><head>
|
|
|
48 |
"""
|
49 |
|
50 |
|
|
|
51 |
tik_html = """
|
52 |
<!DOCTYPE html>
|
53 |
|
|
|
68 |
</html>"""
|
69 |
|
70 |
|
|
|
71 |
# print(tik_html)
|
tokenization_qwen.py
CHANGED
@@ -23,9 +23,6 @@ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s
|
|
23 |
ENDOFTEXT = "<|endoftext|>"
|
24 |
IMSTART = "<|im_start|>"
|
25 |
IMEND = "<|im_end|>"
|
26 |
-
# as the default behavior is changed to allow special tokens in
|
27 |
-
# regular texts, the surface forms of special tokens need to be
|
28 |
-
# as different as possible to minimize the impact
|
29 |
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
SPECIAL_TOKENS = (
|
31 |
ENDOFTEXT,
|
@@ -81,9 +78,9 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
81 |
image_pad_tag
|
82 |
)
|
83 |
|
84 |
-
self.errors = errors
|
85 |
|
86 |
-
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
87 |
self.special_tokens = {
|
88 |
token: index
|
89 |
for index, token in enumerate(
|
@@ -113,10 +110,10 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
113 |
|
114 |
self.decoder = {
|
115 |
v: k for k, v in self.mergeable_ranks.items()
|
116 |
-
}
|
117 |
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
118 |
|
119 |
-
self.tokenizer = enc
|
120 |
|
121 |
self.eod_id = self.tokenizer.eot_token
|
122 |
self.im_start_id = self.special_tokens[IMSTART]
|
@@ -196,7 +193,6 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
196 |
tokens = []
|
197 |
text = unicodedata.normalize("NFC", text)
|
198 |
|
199 |
-
# this implementation takes a detour: text -> token id -> token surface forms
|
200 |
for t in self.tokenizer.encode(
|
201 |
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
202 |
):
|
|
|
23 |
ENDOFTEXT = "<|endoftext|>"
|
24 |
IMSTART = "<|im_start|>"
|
25 |
IMEND = "<|im_end|>"
|
|
|
|
|
|
|
26 |
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
27 |
SPECIAL_TOKENS = (
|
28 |
ENDOFTEXT,
|
|
|
78 |
image_pad_tag
|
79 |
)
|
80 |
|
81 |
+
self.errors = errors
|
82 |
|
83 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
84 |
self.special_tokens = {
|
85 |
token: index
|
86 |
for index, token in enumerate(
|
|
|
110 |
|
111 |
self.decoder = {
|
112 |
v: k for k, v in self.mergeable_ranks.items()
|
113 |
+
}
|
114 |
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
115 |
|
116 |
+
self.tokenizer = enc
|
117 |
|
118 |
self.eod_id = self.tokenizer.eot_token
|
119 |
self.im_start_id = self.special_tokens[IMSTART]
|
|
|
193 |
tokens = []
|
194 |
text = unicodedata.normalize("NFC", text)
|
195 |
|
|
|
196 |
for t in self.tokenizer.encode(
|
197 |
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
198 |
):
|