spleeter-torch / convert_to_torch.py
csukuangfj's picture
add export script
5427eec
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
# Please see ./run.sh for usage
import argparse
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from unet import UNet
def load_graph(frozen_graph_filename):
# This function is modified from
# https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
# We load the protobuf file from the disk and parse it to retrieve the
# unserialized graph_def
with tf.compat.v1.gfile.GFile(frozen_graph_filename, "rb") as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
# Then, we import the graph_def into a new Graph and returns it
with tf.Graph().as_default() as graph:
# The name var will prefix every op/nodes in your graph
# Since we load everything in a new graph, this is not needed
# tf.import_graph_def(graph_def, name="prefix")
tf.import_graph_def(graph_def, name="")
return graph
def generate_waveform():
np.random.seed(20230821)
waveform = np.random.rand(60 * 44100).astype(np.float32)
# (num_samples, num_channels)
waveform = waveform.reshape(-1, 2)
return waveform
def get_param(graph, name):
with tf.compat.v1.Session(graph=graph) as sess:
constant_ops = [op for op in sess.graph.get_operations() if op.type == "Const"]
for constant_op in constant_ops:
if constant_op.name != name:
continue
value = sess.run(constant_op.outputs[0])
return torch.from_numpy(value)
@torch.no_grad()
def main(name):
graph = load_graph(f"./2stems/frozen_{name}_model.pb")
# for op in graph.get_operations():
# print(op.name)
x = graph.get_tensor_by_name("waveform:0")
# y = graph.get_tensor_by_name("Reshape:0")
y0 = graph.get_tensor_by_name("strided_slice_3:0")
# y1 = graph.get_tensor_by_name("leaky_re_lu_5/LeakyRelu:0")
# y1 = graph.get_tensor_by_name("conv2d_5/BiasAdd:0")
# y1 = graph.get_tensor_by_name("conv2d_transpose/BiasAdd:0")
# y1 = graph.get_tensor_by_name("re_lu/Relu:0")
# y1 = graph.get_tensor_by_name("batch_normalization_6/cond/FusedBatchNorm_1:0")
# y1 = graph.get_tensor_by_name("concatenate/concat:0")
# y1 = graph.get_tensor_by_name("concatenate_1/concat:0")
# y1 = graph.get_tensor_by_name("concatenate_4/concat:0")
# y1 = graph.get_tensor_by_name("batch_normalization_11/cond/FusedBatchNorm_1:0")
# y1 = graph.get_tensor_by_name("conv2d_6/Sigmoid:0")
y1 = graph.get_tensor_by_name(f"{name}_spectrogram/mul:0")
unet = UNet()
unet.eval()
# For the conv2d in tensorflow, weight shape is (kernel_h, kernel_w, in_channel, out_channel)
# default input shape is NHWC
# For the conv2d in torch, weight shape is (out_channel, in_channel, kernel_h, kernel_w)
# default input shape is NCHW
state_dict = unet.state_dict()
# print(list(state_dict.keys()))
if name == "vocals":
state_dict["conv.weight"] = get_param(graph, "conv2d/kernel").permute(
3, 2, 0, 1
)
state_dict["conv.bias"] = get_param(graph, "conv2d/bias")
state_dict["bn.weight"] = get_param(graph, "batch_normalization/gamma")
state_dict["bn.bias"] = get_param(graph, "batch_normalization/beta")
state_dict["bn.running_mean"] = get_param(
graph, "batch_normalization/moving_mean"
)
state_dict["bn.running_var"] = get_param(
graph, "batch_normalization/moving_variance"
)
conv_offset = 0
bn_offset = 0
else:
state_dict["conv.weight"] = get_param(graph, "conv2d_7/kernel").permute(
3, 2, 0, 1
)
state_dict["conv.bias"] = get_param(graph, "conv2d_7/bias")
state_dict["bn.weight"] = get_param(graph, "batch_normalization_12/gamma")
state_dict["bn.bias"] = get_param(graph, "batch_normalization_12/beta")
state_dict["bn.running_mean"] = get_param(
graph, "batch_normalization_12/moving_mean"
)
state_dict["bn.running_var"] = get_param(
graph, "batch_normalization_12/moving_variance"
)
conv_offset = 7
bn_offset = 12
for i in range(1, 6):
state_dict[f"conv{i}.weight"] = get_param(
graph, f"conv2d_{i+conv_offset}/kernel"
).permute(3, 2, 0, 1)
state_dict[f"conv{i}.bias"] = get_param(graph, f"conv2d_{i+conv_offset}/bias")
if i >= 5:
continue
state_dict[f"bn{i}.weight"] = get_param(
graph, f"batch_normalization_{i+bn_offset}/gamma"
)
state_dict[f"bn{i}.bias"] = get_param(
graph, f"batch_normalization_{i+bn_offset}/beta"
)
state_dict[f"bn{i}.running_mean"] = get_param(
graph, f"batch_normalization_{i+bn_offset}/moving_mean"
)
state_dict[f"bn{i}.running_var"] = get_param(
graph, f"batch_normalization_{i+bn_offset}/moving_variance"
)
if name == "vocals":
state_dict["up1.weight"] = get_param(graph, "conv2d_transpose/kernel").permute(
3, 2, 0, 1
)
state_dict["up1.bias"] = get_param(graph, "conv2d_transpose/bias")
state_dict["bn5.weight"] = get_param(graph, "batch_normalization_6/gamma")
state_dict["bn5.bias"] = get_param(graph, "batch_normalization_6/beta")
state_dict["bn5.running_mean"] = get_param(
graph, "batch_normalization_6/moving_mean"
)
state_dict["bn5.running_var"] = get_param(
graph, "batch_normalization_6/moving_variance"
)
conv_offset = 0
bn_offset = 0
else:
state_dict["up1.weight"] = get_param(
graph, "conv2d_transpose_6/kernel"
).permute(3, 2, 0, 1)
state_dict["up1.bias"] = get_param(graph, "conv2d_transpose_6/bias")
state_dict["bn5.weight"] = get_param(graph, "batch_normalization_18/gamma")
state_dict["bn5.bias"] = get_param(graph, "batch_normalization_18/beta")
state_dict["bn5.running_mean"] = get_param(
graph, "batch_normalization_18/moving_mean"
)
state_dict["bn5.running_var"] = get_param(
graph, "batch_normalization_18/moving_variance"
)
conv_offset = 6
bn_offset = 12
for i in range(1, 6):
state_dict[f"up{i+1}.weight"] = get_param(
graph, f"conv2d_transpose_{i+conv_offset}/kernel"
).permute(3, 2, 0, 1)
state_dict[f"up{i+1}.bias"] = get_param(
graph, f"conv2d_transpose_{i+conv_offset}/bias"
)
state_dict[f"bn{5+i}.weight"] = get_param(
graph, f"batch_normalization_{6+i+bn_offset}/gamma"
)
state_dict[f"bn{5+i}.bias"] = get_param(
graph, f"batch_normalization_{6+i+bn_offset}/beta"
)
state_dict[f"bn{5+i}.running_mean"] = get_param(
graph, f"batch_normalization_{6+i+bn_offset}/moving_mean"
)
state_dict[f"bn{5+i}.running_var"] = get_param(
graph, f"batch_normalization_{6+i+bn_offset}/moving_variance"
)
if name == "vocals":
state_dict["up7.weight"] = get_param(graph, "conv2d_6/kernel").permute(
3, 2, 0, 1
)
state_dict["up7.bias"] = get_param(graph, "conv2d_6/bias")
else:
state_dict["up7.weight"] = get_param(graph, "conv2d_13/kernel").permute(
3, 2, 0, 1
)
state_dict["up7.bias"] = get_param(graph, "conv2d_13/bias")
unet.load_state_dict(state_dict)
with tf.compat.v1.Session(graph=graph) as sess:
y0_out, y1_out = sess.run([y0, y1], feed_dict={x: generate_waveform()})
# y0_out = sess.run(y0, feed_dict={x: generate_waveform()})
# y1_out = sess.run(y1, feed_dict={x: generate_waveform()})
# print(y0_out.shape)
# print(y1_out.shape)
# for the batchnormalization in tensorflow,
# default input shape is NHWC
# for the batchnormalization in torch,
# default input shape is NCHW
# NHWC to NCHW
torch_y1_out = unet(torch.from_numpy(y0_out).permute(0, 3, 1, 2))
# print(torch_y1_out.shape, torch.from_numpy(y1_out).permute(0, 3, 1, 2).shape)
assert torch.allclose(
torch_y1_out, torch.from_numpy(y1_out).permute(0, 3, 1, 2), atol=1e-1
), ((torch_y1_out - torch.from_numpy(y1_out).permute(0, 3, 1, 2)).abs().max())
torch.save(unet.state_dict(), f"2stems/{name}.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--name",
type=str,
required=True,
choices=["vocals", "accompaniment"],
)
args = parser.parse_args()
print(vars(args))
main(args.name)