cssupport commited on
Commit
6f6e9ef
·
1 Parent(s): eb344f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -0
README.md CHANGED
@@ -1,3 +1,119 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-classification
6
  ---
7
+
8
+ # Model Card for Model ID
9
+
10
+ <!-- Based on https://huggingface.co/t5-small, model generates SQL from text given table list with "CREATE TABLE" statements.
11
+ This is a very light weigh model and could be used in multiple analytical applications. -->
12
+
13
+ Based on [bert-base-uncased](https://huggingface.co/bert-base-uncased) . This model takes in news summary/news headlines/news article and classifies into one of 40 categories (listed below) . Dataset used to traing this model is from [Kaggle](www.kaggle.com) called [News Category Dataset](https://www.kaggle.com/datasets/rmisra/news-category-dataset) porvided by [ rishabhmisra.github.io/publications]( rishabhmisra.github.io/publications).
14
+ Contact us for more info: [email protected].
15
+ ### Below are the output labels:
16
+ - arts = 0, arts & culture =1, black voices = 2, business = 3, college = 4, comedy = 5, crime = 6, culture & arts = 7, education = 8, entertainment = 9,environment = 10
17
+ - fifty=11, food & drink = 12 ,good news = 13, green = 14, healthy living = 15, home & living = 16, impact = 17, latino voices = 18 , media = 19, money = 20 , parenting = 21 , parents = 22
18
+ - politics = 23, queer voices = 24, religion = 25, science = 26, sports = 27, style = 28, style & beauty = 29 ,taste = 30 ,tech = 31, the worldpost = 32,travel = 33
19
+ - u.s. news = 34, weddings = 35, weird news = 36, wellness = 37, women = 38 , world news = 39 , worldpost = 40
20
+ ## Model Details
21
+
22
+ ### Model Description
23
+
24
+ <!-- Provide a longer summary of what this model is. -->
25
+
26
+
27
+
28
+ - **Developed by:** cssupport ([email protected])
29
+ - **Model type:** Language model
30
+ - **Language(s) (NLP):** English
31
+ - **License:** Apache 2.0
32
+ - **Finetuned from model :** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
33
+
34
+ ### Model Sources
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ Please refer [bert-base-uncased](https://huggingface.co/bert-base-uncased) for Model Sources.
39
+
40
+ ## How to Get Started with the Model
41
+
42
+ Use the code below to get started with the model.
43
+
44
+ ```python
45
+ from transformers import BertTokenizer, BertForSequenceClassification
46
+ import torch
47
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
48
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
49
+ model = BertForSequenceClassification.from_pretrained ("cssupport/bert-news-class").to(device)
50
+
51
+ def predict(text):
52
+ id_to_class = {0: 'arts', 1: 'arts & culture', 2: 'black voices', 3: 'business', 4: 'college', 5: 'comedy', 6: 'crime', 7: 'culture & arts', 8: 'education', 9: 'entertainment', 10: 'environment', 11: 'fifty', 12: 'food & drink', 13: 'good news', 14: 'green', 15: 'healthy living', 16: 'home & living', 17: 'impact', 18: 'latino voices', 19: 'media', 20: 'money', 21: 'parenting', 22: 'parents', 23: 'politics', 24: 'queer voices', 25: 'religion', 26: 'science', 27: 'sports', 28: 'style', 29: 'style & beauty', 30: 'taste', 31: 'tech', 32: 'the worldpost', 33: 'travel', 34: 'u.s. news', 35: 'weddings', 36: 'weird news', 37: 'wellness', 38: 'women', 39: 'world news', 40: 'worldpost'}
53
+ # Tokenize the input text
54
+ inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=512, padding='max_length').to(device)
55
+ with torch.no_grad():
56
+ logits = model(inputs['input_ids'], inputs['attention_mask'])[0]
57
+ # Get the predicted class index
58
+ pred_class_idx = torch.argmax(logits, dim=1).item()
59
+ return id_to_class[pred_class_idx]
60
+
61
+
62
+ text ="The UK’s growing debt burden puts it on shaky ground ahead of upcoming assessments by the three main credit ratings agencies. A downgrade to its credit rating, which is a reflection of a country’s creditworthiness, could raise borrowing costs further still, although the impact may be limited."
63
+ predicted_class = predict(text)
64
+ print(predicted_class)
65
+ #OUTPUT : business
66
+ ```
67
+
68
+
69
+ ## Uses
70
+
71
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
72
+
73
+ [More Information Needed]
74
+
75
+ ### Direct Use
76
+
77
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
78
+ Could used in application where natural language is to be converted into SQL queries.
79
+ [More Information Needed]
80
+
81
+
82
+
83
+ ### Out-of-Scope Use
84
+
85
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ## Bias, Risks, and Limitations
90
+
91
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
92
+
93
+ [More Information Needed]
94
+
95
+ ### Recommendations
96
+
97
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
98
+
99
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
100
+
101
+
102
+
103
+ ## Technical Specifications
104
+
105
+ ### Model Architecture and Objective
106
+
107
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased)
108
+
109
+ ### Compute Infrastructure
110
+
111
+
112
+
113
+ #### Hardware
114
+
115
+ one P6000 GPU
116
+
117
+ #### Software
118
+
119
+ Pytorch and HuggingFace