--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - genbed - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-bem-genbed-m-model results: [] --- # w2v-bert-bem-genbed-m-model This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.4168 - Wer: 0.5478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.7215 | 1.1019 | 200 | 0.6150 | 0.7430 | | 0.5519 | 2.2039 | 400 | 0.5605 | 0.7116 | | 0.4346 | 3.3058 | 600 | 0.4709 | 0.6378 | | 0.3545 | 4.4077 | 800 | 0.4686 | 0.5984 | | 0.3004 | 5.5096 | 1000 | 0.4578 | 0.6203 | | 0.2498 | 6.6116 | 1200 | 0.4245 | 0.5246 | | 0.23 | 7.7135 | 1400 | 0.4168 | 0.5478 | | 0.1959 | 8.8154 | 1600 | 0.4212 | 0.5230 | | 0.1682 | 9.9174 | 1800 | 0.4357 | 0.5054 | | 0.1459 | 11.0193 | 2000 | 0.4253 | 0.5296 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0