--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-swagen-female-model results: [] --- # mms-1b-swagen-female-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.2065 - Wer: 0.1900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.5907 | 0.1176 | 100 | 4.5590 | 1.0 | | 4.3006 | 0.2353 | 200 | 4.2573 | 1.0 | | 4.1906 | 0.3529 | 300 | 3.8436 | 1.0 | | 1.1198 | 0.4706 | 400 | 0.2569 | 0.1996 | | 0.3012 | 0.5882 | 500 | 0.2466 | 0.1942 | | 0.2919 | 0.7059 | 600 | 0.2501 | 0.1990 | | 0.267 | 0.8235 | 700 | 0.2353 | 0.1894 | | 0.2666 | 0.9412 | 800 | 0.2280 | 0.1904 | | 0.2396 | 1.0588 | 900 | 0.2238 | 0.1892 | | 0.258 | 1.1765 | 1000 | 0.2202 | 0.1898 | | 0.2192 | 1.2941 | 1100 | 0.2196 | 0.1938 | | 0.2353 | 1.4118 | 1200 | 0.2169 | 0.1875 | | 0.2398 | 1.5294 | 1300 | 0.2164 | 0.1896 | | 0.2419 | 1.6471 | 1400 | 0.2146 | 0.1913 | | 0.2582 | 1.7647 | 1500 | 0.2122 | 0.1905 | | 0.2417 | 1.8824 | 1600 | 0.2105 | 0.1861 | | 0.2375 | 2.0 | 1700 | 0.2091 | 0.1892 | | 0.2353 | 2.1176 | 1800 | 0.2087 | 0.1882 | | 0.23 | 2.2353 | 1900 | 0.2091 | 0.1904 | | 0.2378 | 2.3529 | 2000 | 0.2067 | 0.1898 | | 0.2343 | 2.4706 | 2100 | 0.2061 | 0.1890 | | 0.2083 | 2.5882 | 2200 | 0.2084 | 0.1884 | | 0.2058 | 2.7059 | 2300 | 0.2085 | 0.1882 | | 0.2197 | 2.8235 | 2400 | 0.2062 | 0.1904 | | 0.2317 | 2.9412 | 2500 | 0.2065 | 0.1896 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0