--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-male-15hrs-model results: [] --- # mms-1b-bigcgen-male-15hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.4756 - Wer: 0.4703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.7965 | 0.1033 | 100 | 3.5227 | 1.0007 | | 6.2688 | 0.2066 | 200 | 2.7700 | 1.0325 | | 3.6179 | 0.3099 | 300 | 0.7532 | 0.6069 | | 1.7779 | 0.4132 | 400 | 0.6508 | 0.5821 | | 1.5595 | 0.5165 | 500 | 0.6249 | 0.5578 | | 1.5884 | 0.6198 | 600 | 0.6142 | 0.5283 | | 1.5532 | 0.7231 | 700 | 0.5929 | 0.5172 | | 1.4021 | 0.8264 | 800 | 0.5996 | 0.5182 | | 1.507 | 0.9298 | 900 | 0.5824 | 0.5121 | | 1.5374 | 1.0331 | 1000 | 0.5615 | 0.5061 | | 1.4139 | 1.1364 | 1100 | 0.5456 | 0.5066 | | 1.4472 | 1.2397 | 1200 | 0.5177 | 0.4874 | | 1.2958 | 1.3430 | 1300 | 0.5022 | 0.4871 | | 1.3292 | 1.4463 | 1400 | 0.4984 | 0.4871 | | 1.2062 | 1.5496 | 1500 | 0.4886 | 0.4799 | | 1.1623 | 1.6529 | 1600 | 0.4811 | 0.4823 | | 1.2759 | 1.7562 | 1700 | 0.4735 | 0.4677 | | 1.1852 | 1.8595 | 1800 | 0.4986 | 0.4669 | | 1.0712 | 1.9628 | 1900 | 0.5045 | 0.4845 | | 1.2023 | 2.0661 | 2000 | 0.4755 | 0.4782 | | 1.2275 | 2.1694 | 2100 | 0.4756 | 0.4705 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0