--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-male-10hrs-model results: [] --- # mms-1b-bigcgen-male-10hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.4413 - Wer: 0.4554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 12.1631 | 0.1548 | 100 | 1.2139 | 0.8800 | | 1.7593 | 0.3096 | 200 | 0.6127 | 0.5689 | | 1.6361 | 0.4644 | 300 | 0.5921 | 0.5732 | | 1.6146 | 0.6192 | 400 | 0.5587 | 0.5547 | | 1.3783 | 0.7740 | 500 | 0.5520 | 0.5314 | | 1.36 | 0.9288 | 600 | 0.5444 | 0.5278 | | 1.3447 | 1.0836 | 700 | 0.5394 | 0.5126 | | 1.3265 | 1.2384 | 800 | 0.5085 | 0.5028 | | 1.2625 | 1.3932 | 900 | 0.4822 | 0.5008 | | 1.2793 | 1.5480 | 1000 | 0.5092 | 0.5037 | | 1.266 | 1.7028 | 1100 | 0.4713 | 0.4958 | | 1.2451 | 1.8576 | 1200 | 0.4544 | 0.4780 | | 1.3066 | 2.0124 | 1300 | 0.4491 | 0.4737 | | 1.2102 | 2.1672 | 1400 | 0.4510 | 0.4785 | | 1.2384 | 2.3220 | 1500 | 0.4534 | 0.4756 | | 1.2143 | 2.4768 | 1600 | 0.4538 | 0.4734 | | 1.0998 | 2.6316 | 1700 | 0.4472 | 0.4684 | | 1.0608 | 2.7864 | 1800 | 0.4533 | 0.4616 | | 1.1756 | 2.9412 | 1900 | 0.4384 | 0.4614 | | 1.0873 | 3.0960 | 2000 | 0.4458 | 0.4638 | | 1.0788 | 3.2508 | 2100 | 0.4400 | 0.4573 | | 1.1188 | 3.4056 | 2200 | 0.4412 | 0.4650 | | 1.2589 | 3.5604 | 2300 | 0.4413 | 0.4554 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0