--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bemgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bemgen-female-model results: [] --- # mms-1b-bemgen-female-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BEMGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.1921 - Wer: 0.3440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.6524 | 0.1028 | 100 | 0.6406 | 0.6924 | | 0.4626 | 0.2055 | 200 | 0.2750 | 0.4520 | | 0.3384 | 0.3083 | 300 | 0.2556 | 0.4587 | | 0.3391 | 0.4111 | 400 | 0.2391 | 0.4119 | | 0.2928 | 0.5139 | 500 | 0.2326 | 0.4009 | | 0.3126 | 0.6166 | 600 | 0.2275 | 0.4031 | | 0.3305 | 0.7194 | 700 | 0.2208 | 0.3978 | | 0.3043 | 0.8222 | 800 | 0.2123 | 0.3804 | | 0.2989 | 0.9250 | 900 | 0.2135 | 0.3793 | | 0.2911 | 1.0277 | 1000 | 0.2117 | 0.3890 | | 0.2994 | 1.1305 | 1100 | 0.2066 | 0.3868 | | 0.2849 | 1.2333 | 1200 | 0.2113 | 0.3932 | | 0.2864 | 1.3361 | 1300 | 0.2018 | 0.3713 | | 0.2611 | 1.4388 | 1400 | 0.2005 | 0.4004 | | 0.2995 | 1.5416 | 1500 | 0.1996 | 0.3729 | | 0.2787 | 1.6444 | 1600 | 0.2015 | 0.3647 | | 0.2444 | 1.7472 | 1700 | 0.1988 | 0.3603 | | 0.2734 | 1.8499 | 1800 | 0.1950 | 0.3590 | | 0.2794 | 1.9527 | 1900 | 0.1953 | 0.3546 | | 0.2708 | 2.0555 | 2000 | 0.1934 | 0.3610 | | 0.2545 | 2.1583 | 2100 | 0.1953 | 0.3616 | | 0.2529 | 2.2610 | 2200 | 0.1940 | 0.3559 | | 0.2628 | 2.3638 | 2300 | 0.1926 | 0.3585 | | 0.2788 | 2.4666 | 2400 | 0.1925 | 0.3510 | | 0.2473 | 2.5694 | 2500 | 0.1878 | 0.3499 | | 0.2595 | 2.6721 | 2600 | 0.1911 | 0.3705 | | 0.2516 | 2.7749 | 2700 | 0.1883 | 0.3480 | | 0.2445 | 2.8777 | 2800 | 0.1921 | 0.3442 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0