crpatel commited on
Commit
f22980e
·
verified ·
1 Parent(s): c31f4d9

Upload SmolLm3.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. SmolLm3.py +281 -0
SmolLm3.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.nn import SiLU
5
+ import yaml
6
+
7
+
8
+ def _init_weights(module, std=0.041666666666666664):
9
+ if isinstance(module, nn.Linear):
10
+ module.weight.data.normal_(mean=0.0, std=std)
11
+ elif isinstance(module, nn.Embedding):
12
+ module.weight.data.normal_(mean=0.0, std=std)
13
+
14
+ class RotaryPositionalEmbedding(nn.Module):
15
+ """
16
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240
17
+ Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
18
+ """
19
+ def __init__(self, dim: int, theta: float = 10000.0):
20
+ super().__init__()
21
+ self.dim = dim
22
+ self.theta = theta
23
+
24
+ def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
25
+ """
26
+ Apply rotary positional embedding to the input tensor.
27
+
28
+ Args:
29
+ x (torch.Tensor): Input tensor of shape # B, T, H, D
30
+ seq_len (int): Sequence length. #T
31
+
32
+ Returns:
33
+ torch.Tensor: Output tensor with rotary positional embeddings applied.
34
+ """
35
+ B, T, H, H_D = x.shape
36
+
37
+ # Generate position indices
38
+ position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1)
39
+
40
+ # Generate frequencies
41
+ freqs = torch.exp(
42
+ torch.arange(0, H_D, 2, dtype=torch.float32, device=x.device) *
43
+ -(torch.log(torch.tensor(self.theta)) / H_D)
44
+
45
+ )
46
+
47
+ # Compute sinusoids
48
+ sinusoid = position * freqs
49
+ sin = torch.sin(sinusoid)
50
+ cos = torch.cos(sinusoid)
51
+
52
+ # Reshape sin and cos to match the input tensor's shape
53
+ sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
54
+ cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
55
+
56
+ # Apply rotary embeddings
57
+ x_rotated = x.clone()
58
+ x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
59
+ x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
60
+
61
+ return x_rotated
62
+
63
+ class LlamaAttention(nn.Module):
64
+ """
65
+ (self_attn): LlamaAttention(
66
+ (q_proj): Linear(in_features=576, out_features=576, bias=False)
67
+ (k_proj): Linear(in_features=576, out_features=192, bias=False)
68
+ (v_proj): Linear(in_features=576, out_features=192, bias=False)
69
+ (o_proj): Linear(in_features=576, out_features=576, bias=False)
70
+ )
71
+ """
72
+ def __init__(self, config, rotary_emb):
73
+ super().__init__()
74
+ self.config = config
75
+ self.num_attention_heads = self.config['num_attention_heads']
76
+ self.hidden_size = self.config['hidden_size']
77
+ # Ensure the hidden size is divisible by the number of attention heads
78
+ if self.hidden_size % self.num_attention_heads != 0:
79
+ raise ValueError(
80
+ f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})"
81
+ )
82
+ self.num_key_value_heads = self.config['num_key_value_heads']
83
+ self.head_dim = self.hidden_size // self.num_attention_heads
84
+ self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
85
+ self.k_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
86
+ self.v_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
87
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
88
+
89
+ # Convert the mask to boolean type when creating it
90
+ # self.register_buffer("mask",
91
+ # torch.triu(torch.ones(self.config['max_position_embeddings'],
92
+ # self.config['max_position_embeddings']),
93
+ # diagonal=1)) # Convert to boolean
94
+
95
+ self.rotary_pos_emb = rotary_emb
96
+
97
+ def forward(self, x):
98
+ B, T, C = x.size()
99
+
100
+ q = self.q_proj(x) # B,T,D
101
+ k = self.k_proj(x) # B,T,D/H
102
+ v = self.v_proj(x) # B,T,D/H
103
+
104
+ q = q.view(B, T, self.num_attention_heads, self.head_dim) # B,T,H,D
105
+ k = k.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
106
+ v = v.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
107
+
108
+ q = q.transpose(1,2) # B,H,T,D
109
+ k = k.transpose(1,2) # B,num_key_value_heads,T,D
110
+ v = v.transpose(1,2) # B,num_key_value_heads,T,D
111
+
112
+ # apply rotary positional embedding
113
+ q = self.rotary_pos_emb(q, T)
114
+ k = self.rotary_pos_emb(k, T)
115
+
116
+ # Repeat k/v heads if num_key_value_heads < num_attention_heads
117
+ if self.num_key_value_heads != self.num_attention_heads:
118
+ k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
119
+ v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
120
+
121
+ # Manual attention Stats
122
+ # Q(B,H,T,D) @K.T(B,H,D,T) = Q.K_T (B,H,T,T)
123
+ # attn_scores = q @ k.transpose(-2,-1) # B,H,T,T
124
+ # mask_bool = self.mask[:T,:T].bool() # T,T
125
+ # attn_scores.masked_fill_(mask_bool, -torch.inf) # B,H,T,T
126
+ # attn_weights = F.softmax(attn_scores/k.size(-1)**0.5, dim=-1) # B,H,T,T
127
+ # context_vector = attn_weights @ v # B,H,T,T * B,H,T,D = B,H,T,D
128
+ # context_vector = context_vector.transpose(1,2) # B,T,H,D
129
+ # context_vector = context_vector.contiguous().view(B,T,C) # B,T,H,D -> B,T,D
130
+ # Manual attention Stats ENDS
131
+
132
+ # Scaled dot-product attention STARTS
133
+ attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
134
+ context_vector = attn_out.transpose(1,2).reshape(B,T,C)
135
+ # Scaled dot-product attention ENDS
136
+
137
+ context_vector = self.o_proj(context_vector)
138
+
139
+ return context_vector
140
+
141
+
142
+ class LlamaMLP(nn.Module):
143
+ """
144
+ (mlp): LlamaMLP(
145
+ (gate_proj): Linear(in_features=576, out_features=1536, bias=False)
146
+ (up_proj): Linear(in_features=576, out_features=1536, bias=False)
147
+ (down_proj): Linear(in_features=1536, out_features=576, bias=False)
148
+ (act_fn): SiLU()
149
+ )
150
+ """
151
+ def __init__(self, config):
152
+ super().__init__()
153
+ self.config = config
154
+ self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
155
+ self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
156
+ self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False)
157
+ self.act_fn = SiLU()
158
+ def forward(self, x):
159
+ gate = self.gate_proj(x)
160
+ up = self.up_proj(x)
161
+ down = self.down_proj(self.act_fn(gate)*up)
162
+ return down
163
+
164
+ class LlamaRMSNorm(nn.Module):
165
+ """
166
+ (norm): LlamaRMSNorm((576,), eps=1e-05)
167
+ # RMSNorm Formula:
168
+ # RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d)))
169
+ # x_normalized = x / RMS(x)
170
+ # output = gamma * x_normalized
171
+
172
+ """
173
+ def __init__(self, config):
174
+ super().__init__()
175
+ self.config = config
176
+ self.eps = self.config['rms_norm_eps']
177
+ self.weight = nn.Parameter(torch.ones(self.config['hidden_size']))
178
+ def forward(self, x):
179
+ rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
180
+ return self.weight *rms * x
181
+
182
+ class LlamaDecoderLayer(nn.Module):
183
+ def __init__(self, config, rotary_emb):
184
+ super().__init__()
185
+ self.config = config
186
+ self.self_attn = LlamaAttention(self.config, rotary_emb)
187
+ self.mlp = LlamaMLP(self.config)
188
+ self.input_layernorm = LlamaRMSNorm(self.config)
189
+ self.post_attention_layernorm = LlamaRMSNorm(self.config)
190
+
191
+ def forward(self, x):
192
+ residual = x
193
+ x = self.input_layernorm(x)
194
+ x = self.self_attn(x)
195
+ x = x + residual
196
+
197
+ residual = x
198
+ x = self.post_attention_layernorm(x)
199
+ x = self.mlp(x)
200
+ x = x + residual
201
+ return x
202
+
203
+ class LlamaModel(nn.Module):
204
+ def __init__(self, config):
205
+ super().__init__()
206
+ self.init_method = config['init_method']
207
+ self.config = config['model_config']
208
+ self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size'])
209
+ self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta'])
210
+ self.layers = nn.ModuleList([LlamaDecoderLayer(self.config, self.rotary_emb) for _ in range(self.config['num_hidden_layers'])])
211
+ self.norm = LlamaRMSNorm(self.config)
212
+ self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False)
213
+
214
+ if self.config['tie_word_embeddings']:
215
+ self.lm_head.weight = self.embed_tokens.weight
216
+
217
+ self.apply(lambda m: _init_weights(m, self.init_method['std']))
218
+
219
+ def forward(self, x, y=None):
220
+ x = self.embed_tokens(x)
221
+ for layer in self.layers:
222
+ x = layer(x)
223
+ x = self.norm(x)
224
+ logits = self.lm_head(x) # B,T,V
225
+ logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V]
226
+ if y is not None:
227
+ y = y.view(-1) # Shape: [B*T]
228
+ loss = torch.nn.functional.cross_entropy(logits, y)
229
+ return logits, loss
230
+ else:
231
+ return logits, None
232
+
233
+
234
+ def generate(self, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None):
235
+ model = self.to(device)
236
+ idx = idx.to(device)
237
+ model.eval()
238
+ for _ in range(max_new_tokens):
239
+ idx_cond = idx[:, -context_length:]
240
+ with torch.no_grad():
241
+ logits, _ = model(idx_cond) # Unpack both logits and loss (ignore loss)
242
+ logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size']) # Reshape to [batch, seq, vocab]
243
+
244
+ # Get the logits for the last token only
245
+ logits = logits[:, -1, :] # Shape: [batch_size, vocab_size]
246
+
247
+ if top_k is not None:
248
+ # top k sampling
249
+ top_logits, top_pos = torch.topk(logits, top_k)
250
+ min_logit = top_logits[:, -1].unsqueeze(-1)
251
+ logits = torch.where(logits < min_logit,
252
+ torch.tensor(float('-inf')).to(logits.device),
253
+ logits)
254
+
255
+ # temperature scaling
256
+ if temperature > 0.0:
257
+ logits /= temperature
258
+ probs = torch.softmax(logits, dim=-1)
259
+ idx_next = torch.multinomial(probs, num_samples=1)
260
+ else:
261
+ idx_next = torch.argmax(logits, dim=-1, keepdim=True)
262
+
263
+ if idx_next.item() == eos_token:
264
+ break
265
+
266
+ idx = torch.cat((idx, idx_next), dim=1)
267
+ model.train()
268
+ return idx
269
+
270
+ # if __name__ == "__main__":
271
+ # torch.manual_seed(0)
272
+ # config = yaml.load(open("config_smollm2_135M.yaml", "r"), Loader=yaml.FullLoader)
273
+ # print(config.keys())
274
+ # model_config = config['model']['model_config']
275
+ # print(model_config)
276
+ # model = LlamaModel(config['model'])
277
+ # x_tokens = torch.randint(0, model_config['vocab_size'], (1, 10)) # Generate random token indices
278
+ # print(model(x_tokens).shape)
279
+ # total_params = sum(p.numel() for p in model.parameters())
280
+ # print(f"Total parameters: {total_params}") #134515008
281
+ # print(model)