croumegous
commited on
Commit
·
74df466
1
Parent(s):
07dc875
Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1724.57 +/- 356.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef012a71873443ac2a713962f56a7a91b214ea67ba9e004b7dfa863b021ea04
|
3 |
+
size 128811
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3622a4d5e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3622a4d670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3622a4d700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3622a4d790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3622a4d820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3622a4d8b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3622a4d940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3622a4d9d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3622a4da60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3622a4daf0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3622a4db80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3622a4e580>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1660582118.0504842,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS9jcm91bWVnb3VzL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvY3JvdW1lZ291cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKZ4pr5PGtO+IkXzPqGURz5ssg6/VgakP6o0XL3uNTG+IQM2P/0sFT+CkXS/+rJUPnc4gb94IzM/9q98PuHEkT57BIK+93HBP28Usz4f0e6/8O4hv74exrzYj0I+z1J7Pp0Fk79h9fc+Y9rYvy3TbT/a2g8/SvbtPfPkCj81v9Q/6+TIPiDNhT8iZis+8oMFvyiEIj8j3K2/kzqNv/rrsryRVs8+40YJP5M0ED6eRAFA02WoPxakIr76ZdG+SsvEv3fKjT87jynA/JGaP/0Axj+dBZO/YfX3Pl8bFz8t020/O+FXP7B2wr6Ai/g+kzogPxY7l7/cE+G/qiTHO8AQlb5mMJq8NKl7vqpOoT8xK09A+td9v2AKCMASnAq/gkD5v11erjy6ppy/8QTNvlNqCL4RliG/gE0OPE210L7W4T/AnQWTv2H19z5fGxc/M8iJv/as/b1KXgW/mYHePvIXYj8eetO/CBr/P0syWL4ByVu/+YQgvUx1+z/NkCc/oU0ovcQmqr//rgc/4vWgPvZD/T4PJKS/JEo5vquhTj8ILwO+5d82vnAIaD9dD3q/7f4XP9jgXj9h9fc+XxsXPzPIib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABKic21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0hVUPQAAAABIQN6/AAAAAGQqG70AAAAAM/vlPwAAAAAcqKy8AAAAADsE4D8AAAAA6p00vQAAAABrHeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7ssYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyxGD0AAAAA5lMAwAAAAADSKsw9AAAAANks9j8AAAAACYxePQAAAACtL/I/AAAAAAxqujwAAAAApxrhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMm7VTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDurwK+AAAAANXt7r8AAAAA26dXvAAAAADJ2fQ/AAAAADW+q70AAAAADwPkPwAAAAATS0q6AAAAAA2U878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXL162AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMgoPvAAAAABC0/m/AAAAAIpdQb0AAAAAoGDoPwAAAABMzeK9AAAAAMPk6T8AAAAA6/AgvAAAAAC22fS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5fgi6g/TuMAWyUTegDjAF0lEdAp6Qbkhib2HV9lChoBkdAniC9wvQF92gHTegDaAhHQKekVW6K+BZ1fZQoaAZHQJd3nLGJemhoB03oA2gIR0CnpUzaTOgQdX2UKGgGR0Ccq3iC8OCoaAdN6ANoCEdAp6a6ylenh3V9lChoBkdAgdaRgJC0GGgHTegDaAhHQKevsLZzxPR1fZQoaAZHQJkvbL1VYIVoB03oA2gIR0Cnr+r2YfGNdX2UKGgGR0CZcucwQDmsaAdN6ANoCEdAp7DitvGZNXV9lChoBkdAnjIuEM9bHWgHTegDaAhHQKeyUL4N7Sl1fZQoaAZHQJihFMi8nNRoB03oA2gIR0Cnu38w5/9YdX2UKGgGR0CWSxkZaV2SaAdN6ANoCEdAp7u7J4jbBXV9lChoBkdAlm8QkxASnWgHTegDaAhHQKe8tHz6JqJ1fZQoaAZHQJSO8igTRIBoB03oA2gIR0CnviAAhje9dX2UKGgGR0CTPVpQk5ZKaAdN6ANoCEdAp8cstsenynV9lChoBkdAlMfElAu7H2gHTegDaAhHQKfHYZn+Q2d1fZQoaAZHQJMnBkCmuT1oB03oA2gIR0CnyJy/TLGJdX2UKGgGR0CWtVx9G7SRaAdN6ANoCEdAp8pbzCk43nV9lChoBkdAkgdnyqdYn2gHTegDaAhHQKff5ZuhsZZ1fZQoaAZHQH4NDNY8uBdoB03oA2gIR0Cn4E50Syt3dX2UKGgGR0CX/eKCg9NfaAdN6ANoCEdAp+HoW3z+WHV9lChoBkdAlsl1yeZof2gHTegDaAhHQKflBcB2fTV1fZQoaAZHQJxgHdJrcj9oB03oA2gIR0Cn7mWwu/UOdX2UKGgGR0CGDnppvgm7aAdN6ANoCEdAp+6ZVsDW9XV9lChoBkdAerBvybx3FGgHTegDaAhHQKfvd9mYjSp1fZQoaAZHQJnZEsPJ7sxoB03oA2gIR0Cn8NuIZZSvdX2UKGgGR0CVsSfKZDzAaAdN6ANoCEdAp/iKmCROlHV9lChoBkdAmSpv24/eL2gHTegDaAhHQKf4u9L6DXh1fZQoaAZHQJt/K6Ymb9ZoB03oA2gIR0Cn+YeWOZLJdX2UKGgGR0CXd4lsP8Q7aAdN6ANoCEdAp/q9q8DjinV9lChoBkdAmLPIVmBe5WgHTegDaAhHQKgCcTj/+851fZQoaAZHQJi76k+HJtBoB03oA2gIR0CoAqi22G7BdX2UKGgGR0CXR6xFiKBNaAdN6ANoCEdAqAOUal1r7HV9lChoBkdAmMFUiQkonmgHTegDaAhHQKgFFbbDdgx1fZQoaAZHQJ3LFQVKwpxoB03oA2gIR0CoDfxtP558dX2UKGgGR0CdoUJdjXnRaAdN6ANoCEdAqA42TFERa3V9lChoBkdAnNRM1O0sv2gHTegDaAhHQKgPK1fE4vN1fZQoaAZHQIpwkYht+CtoB03oA2gIR0CoELC3w1BMdX2UKGgGR0CapYFbmlqKaAdN6ANoCEdAqBmYFiay8nV9lChoBkdAneRZazNUwWgHTegDaAhHQKgZ1BQemvZ1fZQoaAZHQJ19QmdAgPpoB03oA2gIR0CoGsm4I8hcdX2UKGgGR0CWlSv0yxiYaAdN6ANoCEdAqBxH9LpRoHV9lChoBkdAlEV+eJ53T2gHTegDaAhHQKglP4REnb91fZQoaAZHQIyzrYXfqHJoB03oA2gIR0CoJX+lsP8RdX2UKGgGR0B9cK7BfrrxaAdN6ANoCEdAqCZ9schkiHV9lChoBkdAlo8NHYpUgmgHTegDaAhHQKgn756dDpl1fZQoaAZHQJT89dcB2fVoB03oA2gIR0CoMMbyH2ytdX2UKGgGR0CeGreWOZLJaAdN6ANoCEdAqDEClk6LfnV9lChoBkdAmuz3IEKVp2gHTegDaAhHQKgyDVMmF8J1fZQoaAZHQJsoIB/7SApoB03oA2gIR0CoM4kkjX4CdX2UKGgGR0CdArE0iyIIaAdN6ANoCEdAqDx5/RVp9XV9lChoBkdAmdb8A7xNI2gHTegDaAhHQKg8sBPKuCB1fZQoaAZHQJwfvutwJgNoB03oA2gIR0CoPapqynk1dX2UKGgGR0CdHAk+otL+aAdN6ANoCEdAqD8g+EAYHnV9lChoBkdAm/pmdupCKWgHTegDaAhHQKhIG/336AR1fZQoaAZHQJee1TMqz7doB03oA2gIR0CoSFUYTCcgdX2UKGgGR0CdaM/sE7nxaAdN6ANoCEdAqElDw6QvH3V9lChoBkdAloccKsuFpWgHTegDaAhHQKhKxHaN+9d1fZQoaAZHQJgiXoxHoX9oB03oA2gIR0CoVAEDIRywdX2UKGgGR0CbSIRZlnRLaAdN6ANoCEdAqFRJYYBNmHV9lChoBkdAmMqgF9roGWgHTegDaAhHQKhVlhMJyAB1fZQoaAZHQJrLk13t8eFoB03oA2gIR0CoV86kqMFVdX2UKGgGR0CZXQy/KyOaaAdN6ANoCEdAqGaHrMTviXV9lChoBkdAmNysyzollmgHTegDaAhHQKhm6QFs54p1fZQoaAZHQJ11j4wh4dJoB03oA2gIR0CoaF1lf7aadX2UKGgGR0CcTkA0bcXWaAdN6ANoCEdAqGsoDoyKvXV9lChoBkdAm6fVkhA4XGgHTegDaAhHQKh3CAMlTm51fZQoaAZHQJtLmaoddVxoB03oA2gIR0Cod0F0o0AMdX2UKGgGR0CdSCXDWK/EaAdN6ANoCEdAqHg3yf+S83V9lChoBkdAn3zjohY/3WgHTegDaAhHQKh5n0A93bF1fZQoaAZHQJh0EVpKzzFoB03oA2gIR0Cogn61kUbldX2UKGgGR0CeoLy/KyOaaAdN6ANoCEdAqIK6BRQ793V9lChoBkdAn8YA+IMz/WgHTegDaAhHQKiDxrZamoB1fZQoaAZHQJUcHHq/ub9oB03oA2gIR0CohUInrpqzdX2UKGgGR0CTz3/rjYI0aAdN6ANoCEdAqI40SAYpD3V9lChoBkdAmSqwcT8HfWgHTegDaAhHQKiOZNUwSJ11fZQoaAZHQJg8UY/FBIFoB03oA2gIR0CojzZGBnSOdX2UKGgGR0CX+YrJbMX8aAdN6ANoCEdAqJB4FLWZqnV9lChoBkdAmMKWa2F36mgHTegDaAhHQKiXx8Lront1fZQoaAZHQJnuqJ2t+1BoB03oA2gIR0Col/ZqubI+dX2UKGgGR0Cb+S+dbxEwaAdN6ANoCEdAqJjAYDTz/nV9lChoBkdAmzSyb+cYqGgHTegDaAhHQKiZ73evZAZ1fZQoaAZHQJjTE9FF2FFoB03oA2gIR0CooToESuhcdX2UKGgGR0B6GFgUlAu7aAdN6ANoCEdAqKFqNQ0oB3V9lChoBkdAm+Jk47zTW2gHTegDaAhHQKiiMXO4XoF1fZQoaAZHQJn7Vwzch1VoB03oA2gIR0Coo1/+0gKXdX2UKGgGR0CbnjOAy2x6aAdN6ANoCEdAqKq65iExqXV9lChoBkdAhlchkZrHl2gHTegDaAhHQKiq7E9+w1R1fZQoaAZHQJ4Scka/ATJoB03oA2gIR0Coq7hAOavzdX2UKGgGR0CdRJGrjo6kaAdN6ANoCEdAqKzxoPCl8HV9lChoBkdAmTGRybQTmGgHTegDaAhHQKi0TGQ0XP91fZQoaAZHQJjJ/CP6sQxoB03oA2gIR0CotHustCiRdX2UKGgGR0CbQXLl3hXKaAdN6ANoCEdAqLVFsvZh8nV9lChoBkdAeid/PPcBVGgHTegDaAhHQKi2iv1UVBV1fZQoaAZHQJsRqSHM2WJoB03oA2gIR0CovcRREWqMdX2UKGgGR0CbUns9jgAIaAdN6ANoCEdAqL3x1vES/XV9lChoBkdAmjsVb/wRXmgHTegDaAhHQKi+vRgqmTF1fZQoaAZHQJz5tdVvMr5oB03oA2gIR0Cov/fCqIacdX2UKGgGR0CcuO3K0UoKaAdN6ANoCEdAqMrYw/PgN3V9lChoBkdAmiVyOJcgQ2gHTegDaAhHQKjLE2cawUx1fZQoaAZHQJ7GfPTodMloB03oA2gIR0CozA8Gkep5dX2UKGgGR0CcLe14gRseaAdN6ANoCEdAqM2LvG6wuHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13f32a7a2d4ce24b8bb67e3d21da8202cd34ff3a9a75f34cfb7a16cf45d71942
|
3 |
+
size 55998
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd48acd8ce168f3c5d5332efd14d650714b74d7d514cb5bba4f855218a76587d
|
3 |
+
size 56638
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.12.1+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3622a4d5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3622a4d670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3622a4d700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3622a4d790>", "_build": "<function ActorCriticPolicy._build at 0x7f3622a4d820>", "forward": "<function ActorCriticPolicy.forward at 0x7f3622a4d8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3622a4d940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3622a4d9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3622a4da60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3622a4daf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3622a4db80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3622a4e580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660582118.0504842, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS9jcm91bWVnb3VzL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvY3JvdW1lZ291cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKZ4pr5PGtO+IkXzPqGURz5ssg6/VgakP6o0XL3uNTG+IQM2P/0sFT+CkXS/+rJUPnc4gb94IzM/9q98PuHEkT57BIK+93HBP28Usz4f0e6/8O4hv74exrzYj0I+z1J7Pp0Fk79h9fc+Y9rYvy3TbT/a2g8/SvbtPfPkCj81v9Q/6+TIPiDNhT8iZis+8oMFvyiEIj8j3K2/kzqNv/rrsryRVs8+40YJP5M0ED6eRAFA02WoPxakIr76ZdG+SsvEv3fKjT87jynA/JGaP/0Axj+dBZO/YfX3Pl8bFz8t020/O+FXP7B2wr6Ai/g+kzogPxY7l7/cE+G/qiTHO8AQlb5mMJq8NKl7vqpOoT8xK09A+td9v2AKCMASnAq/gkD5v11erjy6ppy/8QTNvlNqCL4RliG/gE0OPE210L7W4T/AnQWTv2H19z5fGxc/M8iJv/as/b1KXgW/mYHePvIXYj8eetO/CBr/P0syWL4ByVu/+YQgvUx1+z/NkCc/oU0ovcQmqr//rgc/4vWgPvZD/T4PJKS/JEo5vquhTj8ILwO+5d82vnAIaD9dD3q/7f4XP9jgXj9h9fc+XxsXPzPIib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABKic21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0hVUPQAAAABIQN6/AAAAAGQqG70AAAAAM/vlPwAAAAAcqKy8AAAAADsE4D8AAAAA6p00vQAAAABrHeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7ssYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyxGD0AAAAA5lMAwAAAAADSKsw9AAAAANks9j8AAAAACYxePQAAAACtL/I/AAAAAAxqujwAAAAApxrhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMm7VTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDurwK+AAAAANXt7r8AAAAA26dXvAAAAADJ2fQ/AAAAADW+q70AAAAADwPkPwAAAAATS0q6AAAAAA2U878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXL162AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMgoPvAAAAABC0/m/AAAAAIpdQb0AAAAAoGDoPwAAAABMzeK9AAAAAMPk6T8AAAAA6/AgvAAAAAC22fS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5fgi6g/TuMAWyUTegDjAF0lEdAp6Qbkhib2HV9lChoBkdAniC9wvQF92gHTegDaAhHQKekVW6K+BZ1fZQoaAZHQJd3nLGJemhoB03oA2gIR0CnpUzaTOgQdX2UKGgGR0Ccq3iC8OCoaAdN6ANoCEdAp6a6ylenh3V9lChoBkdAgdaRgJC0GGgHTegDaAhHQKevsLZzxPR1fZQoaAZHQJkvbL1VYIVoB03oA2gIR0Cnr+r2YfGNdX2UKGgGR0CZcucwQDmsaAdN6ANoCEdAp7DitvGZNXV9lChoBkdAnjIuEM9bHWgHTegDaAhHQKeyUL4N7Sl1fZQoaAZHQJihFMi8nNRoB03oA2gIR0Cnu38w5/9YdX2UKGgGR0CWSxkZaV2SaAdN6ANoCEdAp7u7J4jbBXV9lChoBkdAlm8QkxASnWgHTegDaAhHQKe8tHz6JqJ1fZQoaAZHQJSO8igTRIBoB03oA2gIR0CnviAAhje9dX2UKGgGR0CTPVpQk5ZKaAdN6ANoCEdAp8cstsenynV9lChoBkdAlMfElAu7H2gHTegDaAhHQKfHYZn+Q2d1fZQoaAZHQJMnBkCmuT1oB03oA2gIR0CnyJy/TLGJdX2UKGgGR0CWtVx9G7SRaAdN6ANoCEdAp8pbzCk43nV9lChoBkdAkgdnyqdYn2gHTegDaAhHQKff5ZuhsZZ1fZQoaAZHQH4NDNY8uBdoB03oA2gIR0Cn4E50Syt3dX2UKGgGR0CX/eKCg9NfaAdN6ANoCEdAp+HoW3z+WHV9lChoBkdAlsl1yeZof2gHTegDaAhHQKflBcB2fTV1fZQoaAZHQJxgHdJrcj9oB03oA2gIR0Cn7mWwu/UOdX2UKGgGR0CGDnppvgm7aAdN6ANoCEdAp+6ZVsDW9XV9lChoBkdAerBvybx3FGgHTegDaAhHQKfvd9mYjSp1fZQoaAZHQJnZEsPJ7sxoB03oA2gIR0Cn8NuIZZSvdX2UKGgGR0CVsSfKZDzAaAdN6ANoCEdAp/iKmCROlHV9lChoBkdAmSpv24/eL2gHTegDaAhHQKf4u9L6DXh1fZQoaAZHQJt/K6Ymb9ZoB03oA2gIR0Cn+YeWOZLJdX2UKGgGR0CXd4lsP8Q7aAdN6ANoCEdAp/q9q8DjinV9lChoBkdAmLPIVmBe5WgHTegDaAhHQKgCcTj/+851fZQoaAZHQJi76k+HJtBoB03oA2gIR0CoAqi22G7BdX2UKGgGR0CXR6xFiKBNaAdN6ANoCEdAqAOUal1r7HV9lChoBkdAmMFUiQkonmgHTegDaAhHQKgFFbbDdgx1fZQoaAZHQJ3LFQVKwpxoB03oA2gIR0CoDfxtP558dX2UKGgGR0CdoUJdjXnRaAdN6ANoCEdAqA42TFERa3V9lChoBkdAnNRM1O0sv2gHTegDaAhHQKgPK1fE4vN1fZQoaAZHQIpwkYht+CtoB03oA2gIR0CoELC3w1BMdX2UKGgGR0CapYFbmlqKaAdN6ANoCEdAqBmYFiay8nV9lChoBkdAneRZazNUwWgHTegDaAhHQKgZ1BQemvZ1fZQoaAZHQJ19QmdAgPpoB03oA2gIR0CoGsm4I8hcdX2UKGgGR0CWlSv0yxiYaAdN6ANoCEdAqBxH9LpRoHV9lChoBkdAlEV+eJ53T2gHTegDaAhHQKglP4REnb91fZQoaAZHQIyzrYXfqHJoB03oA2gIR0CoJX+lsP8RdX2UKGgGR0B9cK7BfrrxaAdN6ANoCEdAqCZ9schkiHV9lChoBkdAlo8NHYpUgmgHTegDaAhHQKgn756dDpl1fZQoaAZHQJT89dcB2fVoB03oA2gIR0CoMMbyH2ytdX2UKGgGR0CeGreWOZLJaAdN6ANoCEdAqDEClk6LfnV9lChoBkdAmuz3IEKVp2gHTegDaAhHQKgyDVMmF8J1fZQoaAZHQJsoIB/7SApoB03oA2gIR0CoM4kkjX4CdX2UKGgGR0CdArE0iyIIaAdN6ANoCEdAqDx5/RVp9XV9lChoBkdAmdb8A7xNI2gHTegDaAhHQKg8sBPKuCB1fZQoaAZHQJwfvutwJgNoB03oA2gIR0CoPapqynk1dX2UKGgGR0CdHAk+otL+aAdN6ANoCEdAqD8g+EAYHnV9lChoBkdAm/pmdupCKWgHTegDaAhHQKhIG/336AR1fZQoaAZHQJee1TMqz7doB03oA2gIR0CoSFUYTCcgdX2UKGgGR0CdaM/sE7nxaAdN6ANoCEdAqElDw6QvH3V9lChoBkdAloccKsuFpWgHTegDaAhHQKhKxHaN+9d1fZQoaAZHQJgiXoxHoX9oB03oA2gIR0CoVAEDIRywdX2UKGgGR0CbSIRZlnRLaAdN6ANoCEdAqFRJYYBNmHV9lChoBkdAmMqgF9roGWgHTegDaAhHQKhVlhMJyAB1fZQoaAZHQJrLk13t8eFoB03oA2gIR0CoV86kqMFVdX2UKGgGR0CZXQy/KyOaaAdN6ANoCEdAqGaHrMTviXV9lChoBkdAmNysyzollmgHTegDaAhHQKhm6QFs54p1fZQoaAZHQJ11j4wh4dJoB03oA2gIR0CoaF1lf7aadX2UKGgGR0CcTkA0bcXWaAdN6ANoCEdAqGsoDoyKvXV9lChoBkdAm6fVkhA4XGgHTegDaAhHQKh3CAMlTm51fZQoaAZHQJtLmaoddVxoB03oA2gIR0Cod0F0o0AMdX2UKGgGR0CdSCXDWK/EaAdN6ANoCEdAqHg3yf+S83V9lChoBkdAn3zjohY/3WgHTegDaAhHQKh5n0A93bF1fZQoaAZHQJh0EVpKzzFoB03oA2gIR0Cogn61kUbldX2UKGgGR0CeoLy/KyOaaAdN6ANoCEdAqIK6BRQ793V9lChoBkdAn8YA+IMz/WgHTegDaAhHQKiDxrZamoB1fZQoaAZHQJUcHHq/ub9oB03oA2gIR0CohUInrpqzdX2UKGgGR0CTz3/rjYI0aAdN6ANoCEdAqI40SAYpD3V9lChoBkdAmSqwcT8HfWgHTegDaAhHQKiOZNUwSJ11fZQoaAZHQJg8UY/FBIFoB03oA2gIR0CojzZGBnSOdX2UKGgGR0CX+YrJbMX8aAdN6ANoCEdAqJB4FLWZqnV9lChoBkdAmMKWa2F36mgHTegDaAhHQKiXx8Lront1fZQoaAZHQJnuqJ2t+1BoB03oA2gIR0Col/ZqubI+dX2UKGgGR0Cb+S+dbxEwaAdN6ANoCEdAqJjAYDTz/nV9lChoBkdAmzSyb+cYqGgHTegDaAhHQKiZ73evZAZ1fZQoaAZHQJjTE9FF2FFoB03oA2gIR0CooToESuhcdX2UKGgGR0B6GFgUlAu7aAdN6ANoCEdAqKFqNQ0oB3V9lChoBkdAm+Jk47zTW2gHTegDaAhHQKiiMXO4XoF1fZQoaAZHQJn7Vwzch1VoB03oA2gIR0Coo1/+0gKXdX2UKGgGR0CbnjOAy2x6aAdN6ANoCEdAqKq65iExqXV9lChoBkdAhlchkZrHl2gHTegDaAhHQKiq7E9+w1R1fZQoaAZHQJ4Scka/ATJoB03oA2gIR0Coq7hAOavzdX2UKGgGR0CdRJGrjo6kaAdN6ANoCEdAqKzxoPCl8HV9lChoBkdAmTGRybQTmGgHTegDaAhHQKi0TGQ0XP91fZQoaAZHQJjJ/CP6sQxoB03oA2gIR0CotHustCiRdX2UKGgGR0CbQXLl3hXKaAdN6ANoCEdAqLVFsvZh8nV9lChoBkdAeid/PPcBVGgHTegDaAhHQKi2iv1UVBV1fZQoaAZHQJsRqSHM2WJoB03oA2gIR0CovcRREWqMdX2UKGgGR0CbUns9jgAIaAdN6ANoCEdAqL3x1vES/XV9lChoBkdAmjsVb/wRXmgHTegDaAhHQKi+vRgqmTF1fZQoaAZHQJz5tdVvMr5oB03oA2gIR0Cov/fCqIacdX2UKGgGR0CcuO3K0UoKaAdN6ANoCEdAqMrYw/PgN3V9lChoBkdAmiVyOJcgQ2gHTegDaAhHQKjLE2cawUx1fZQoaAZHQJ7GfPTodMloB03oA2gIR0CozA8Gkep5dX2UKGgGR0CcLe14gRseaAdN6ANoCEdAqM2LvG6wuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.31 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.1a8", "PyTorch": "1.12.1+cu102", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf575841e6c33d79bf7b76222730263230ef7e0fc52b3ec4975100ca8ff5f4eb
|
3 |
+
size 1132943
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1724.5742359409255, "std_reward": 356.3675989603675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-15T19:43:30.586301"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48c7c72bdcf3786d247aaf66adb864de38f31b1c6fb3f54f2a7b2e251dc9a43a
|
3 |
+
size 2521
|