Upload PPO Walker2d-v4 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-Walker2d-v4.zip +3 -0
- ppo-Walker2d-v4/_stable_baselines3_version +1 -0
- ppo-Walker2d-v4/data +105 -0
- ppo-Walker2d-v4/policy.optimizer.pth +3 -0
- ppo-Walker2d-v4/policy.pth +3 -0
- ppo-Walker2d-v4/pytorch_variables.pth +3 -0
- ppo-Walker2d-v4/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2d-v4
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Walker2d-v4
|
16 |
+
type: Walker2d-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2300.93 +/- 45.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Walker2d-v4**
|
25 |
+
This is a trained model of a **PPO** agent playing **Walker2d-v4**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792724461900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792724461990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792724461a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792724461ab0>", "_build": "<function ActorCriticPolicy._build at 0x792724461b40>", "forward": "<function ActorCriticPolicy.forward at 0x792724461bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792724461c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792724461cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x792724461d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792724461e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792724461ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792724461f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79272da6b1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701553908103281805, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaACAAAAAAAACQVmVlJk/M/us84axoV4z+nXms97e+jPxq6gGvueKW/GUzPW1Ux1r/mVLn7WTKmP4kSdPi5jZg/iSfYagN95L/XEobx4FX3PxrstIBvSQNAhAcTDCSqAMBtesKzinXcvw+OtR97hf2/7PubWifDCMBdd3e+SGjFv/Et93OjvNC/AAAAAAAAJMBr5DhmyBP3P5WT4w1netw/78ZS4o4ZkT8oPofBaXHbv1ER5GjecOK/cF575MX/m78ALxdtAVqavz4jrdKkkem/vq4IJMvhA0DImiY9pVXdP7utkumjOfS/2gm49qhYsT8JmKRZIXgjwAAAAAAAACRAZcipxm75FsAp2RTUjo4aQDi9h4pYetU/9LFOv8pj9T+5Ev63uwfgP4oVnPHgQqq/kc/Hk0r54b8ENgAzUFLnv5PJjn8LB72/1OJqFOIrnb+0YL9+MILev5YL3DrXcgNAf24wYSYQ2z/6eDj/E9YRwNAud+qbixTALr8qfej7BcCAWw4XeebqP6jOOyMUmg3ANBmoYf/rCcAAAAAAAAAkQHHZnV1IWfU/eQkCbBGo1D+vxa/yRf2Qvyz7+8CIn+S/0yfLpO9T5z/7rvuvfhyjPyVMeqwYO5y/oNvOmwcE4j+foAv9QCgEQIxRwTQ9l+q/tGr/3YkxtD9UyXyB4fjLv19iAa1to+u/AAAAAAAAJMDwXk+v2BGlP7Vi7odsZfs/ynhPp+np9D/DDYuijWXxP5Qf4SA/Mt8/0CVLGnBnlD8KaJyX4ISDP9yQMaPGsuU//Qs4jV+foT8Sp9XSYyCKvzkQfC7HjuU/QFQQdZkr/D+Zp1+4fjriv1amvpIQk/4/rHL92e4k7j+GrX2CkjPpv3rxxZI3rhZAiasYOORD6D/aKBYITWzcvzDIhFJ7gRPAK143OMSK7z8E4h4hXM7oPyNhU57MacE/5ihi02QF6L8Lxhz1g3rzv6oHxQQJUcc/YE4hpZRf47+vAsyR527qv0iLrb+GJv0/8KxEFoWq/L/JtkGVNYAPwBx2xAb6efu/yrJ+yaUmHcBAcSkz5iblPyY7U5dG+Q/AJ2bku6y8F8DI+rWkiELRP8PL7UWF1PI/vX4cm0cE0z8y0KfN0dO5vyIURUNcJce/nNMKYHcV6T8Wmhu1kAGlPzPiggctc38/xhLbuRPo0T/DIFGCDY8AQD4wZ8z2egLA+s7o5KT/7T+kkFGK7BADQNrCAo3eqvg/fnUuiSEfDEDrsx5rrB/Qv+CDutH/TZ4/AAAAAAAAJMBVVGp7R5H2Pzq6U8HjddQ/xlWc3qWxfb8O7qTV90Ppv7yQHH7ZVu0/YZKc3DFtoD8mFKiIKXeEP+PWHe+/6uI/BlretrYEBkCNDxEWObzov4EbRz+2JPY/CJPpqzRRlb8XLcwD26cTQLIukDskaBHA8JSmWJHZuj9f0ShJnNfXPwAAAAAAACTAxr27ip8s8z8dv82v7JSoP3Ytd2jNubI/EF6nXbEOyb92aT7KQqfgPwrzTg1yO5q/gmWEF5RZtb9cmnt6ZAnkP+rII7JfrAFA6a9TBSB0pz+CJ8Ax8GbDP2wtO5Y8Qrq/JFvXdtLgDMBH7FqlLEwXQO6Fj0Qj+xVAxlIm3q6ZIcAOdWD63z0hwCRhJEJTFfM/Cv2hQFWe0D/4MmbIJ5q6v8IQ3d8QqcW/LMv8ur845T+jhO8R/ZKTPxpL89CCUIw/felqIMPKs79uVVdDz5j/P3FBBWaNtuA/sge/2kwA/z8bZa47/nkWQAY+WRUcjvw/y3AElWibGUB5azLzObLVPx3SIzipwby/aWyTet5K6j99sxZx01XzP/IzEFSCa6Q/UwaDeBSdsb/uQA7hh+CxPzEl8xWpxOk/poxZThk4cD/YurWuFkGYv22CyskG+Oo/JQ9Gb+Uizj8OA8fiuluXP1LhoNeAtRJAJ8LvmzR2E0B32iaN5qT+P4YelXOZUNY/AAAAAAAAJEAAAAAAAAAkwFrsnri4uMK/hHYElu4b8z+r73PDD/vLP31uOZbLeac/0CPEqwKkKr82ySy9ForpP9CNpuZtErM//tDydY4ziz9lap/zyejqP1vf5pRX3uA/BlWqcMAcjj8JGSKvxz/mP3mpF/BvDOe/nROgUFsK+D/Cc090RooNwC9AnapQmNA/pxwCCqiUqr9gld6AOUfEv421dW8eFvc/HbMKyXS90j8Fy/UcvvHPv46ofJbOFbW/E1/2c04m6T9Ru1tc0SCdP7QZuPJGW4I/Mh3UQcNj6j/xzwcmCaQBQIirnhHTRde/AwClJgpm0D+oyOwSyqPrv9ZayuIFvQ5AdXGkr3CMAEBC8keHtnC+vx/jMXXDges/oB9dzeHKGsBIz0zjEg30P83znOwtYeI/FaoTQjEpkT83F2qxy5nQvw3VTYZ6Z+q/g9n5F5yskL99WqzU/h2xv+tlRDzDX/C/KMn5zQ0Q/j80ctZl8yb9P1qBBaplQhHAcTFY0NANwr8AAAAAAAAkwHNPUFWY1xZA8NcEMVtoHcAWqa9Kv10UQFgaHNUFsxFABA5DzY238T9l92UpMMPZPzSULw9KCpk/4G7Oixn5ub9/6YnyNcbeP/7ZG6sA46I/onzdfgbAu79BZ+2rlX3bP4z2Dpxk5Pk/begC0Cia4r/sMOnUqfv5P8xh4CfAAMc/7pwWlCDP/D8g03oSbzLPv4m7oEGDm+y/+NvryIx9/j+Xh3vWhZfgP0IY4rqvlfc/cae+F2t31z+iuwF3u9uLP6vuXRvBsbG/H4IIZW9c7D82BPZ1LDyhPyO0dmYZbJE//Uo2edKI4T/TA6tvNG0AQLlzOzVpf/S/kXNr4X8vwz8ZaR32AtHWv/Pxgtf91AJAAZ9Nkv9m+L+ExIbYSbzjvzsD54YOJ+O/IKdZNEhu9b+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLEYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI1dYVTJhfCMAWyUTTYBjAF0lEdAmH7Zd4Vym3V9lChoBkdAhL4yUkfLcWgHS+hoCEdAmH8yYLLIP3V9lChoBkdAgirgzguRLmgHS9RoCEdAmH/dWuHN5nV9lChoBkdAiIwKABkqc2gHTTkBaAhHQJiAPMdLg4x1fZQoaAZHQIbEzJbMX8BoB0vvaAhHQJiApirksBh1fZQoaAZHQIH1WuLaVUxoB0voaAhHQJiBSQHRkVh1fZQoaAZHQIvqDQ1JlJ9oB007AWgIR0CYgcEKmbb2dX2UKGgGR0CLqn7CSA6NaAdNPwFoCEdAmIHdt65Xl3V9lChoBkdAmeIQ+yJKrmgHTS8CaAhHQJiCWFmFrVR1fZQoaAZHQIZr4kiUxEhoB00lAWgIR0CYgvr433pOdX2UKGgGR0CFEwxSpBHDaAdNEgFoCEdAmIVF3EAHV3V9lChoBkdAjxAxekYXPGgHTWEBaAhHQJiGQqtozvZ1fZQoaAZHQJL3XILgGbFoB02fAWgIR0CYhxEQXhwVdX2UKGgGR0CQp8bo8p1BaAdNigFoCEdAmIeIL5RCQnV9lChoBkdAh7cqvFFUhmgHTRUBaAhHQJiIQ1ejVQR1fZQoaAZHQIc0ojW07bNoB00HAWgIR0CYiEZh8YygdX2UKGgGR0BzwpjYqXnhaAdLfWgIR0CY5j+2VmjCdX2UKGgGR0CMr3/LkjoqaAdNMwFoCEdAmOcBHPNVznV9lChoBkdAkJq5aRp1zWgHTXIBaAhHQJjm9Tgl4Tt1fZQoaAZHQIXdW+RHPNVoB00OAWgIR0CY5yez2OABdX2UKGgGR0CEmgknkT6BaAdNLAFoCEdAmOdoKc/dI3V9lChoBkdAkvRzgydnTWgHTbcBaAhHQJjnh6zE74l1fZQoaAZHQIwovAKv3aloB01IAWgIR0CY57plBhQWdX2UKGgGR0CUpP/sE7nxaAdNtwFoCEdAmOg+xW1c+3V9lChoBkdAjJwPmozeoGgHTS0BaAhHQJjqeVyFPBV1fZQoaAZHQJfPRRk3CKtoB00FAmgIR0CY7KII4VASdX2UKGgGR0COEzM36yjYaAdNPAFoCEdAmOyhmoR7JHV9lChoBkdAn/mLwazeGmgHTesCaAhHQJjuzRkVerx1fZQoaAZHQJKTxMwlByFoB01oAWgIR0CY70AJ9iMHdX2UKGgGR0CSmkKYAsClaAdNoQFoCEdAmPArQ1JlKHV9lChoBkdAi4JHhsImgWgHTTIBaAhHQJjwjBRAKOV1fZQoaAZHQJHl/tx+8XhoB02VAWgIR0CY8IOEug6EdX2UKGgGR0CNqoB91EE1aAdNPAFoCEdAmPELA+IM0HV9lChoBkdAlPI0XHim22gHTcQBaAhHQJjzamce8wp1fZQoaAZHQInQES/TLGJoB00TAWgIR0CY9K9ycTakdX2UKGgGR0CU9PGm1pj+aAdN2wFoCEdAmPUDgQ6IWXV9lChoBkdApN/FU83dbmgHTYQDaAhHQJj1RNZeRgZ1fZQoaAZHQJcxIVpKzzFoB03zAWgIR0CY9XiCJ40NdX2UKGgGR0CWhEOxB3RpaAdNBQJoCEdAmPXwY1pCbHV9lChoBkdAjpBwPiDM/2gHTVsBaAhHQJj2dtxdY4h1fZQoaAZHQJbjFwkxASpoB00QAmgIR0CY9wYDTz/ZdX2UKGgGR0CURhu5BkZraAdN1AFoCEdAmPc/fsNUfnV9lChoBkdAiv4RqfvnbWgHTTEBaAhHQJj3OwUxmCl1fZQoaAZHQIzkR6IFeOZoB00tAWgIR0CY+ATyauwHdX2UKGgGR0CAofBeHBUJaAdLrWgIR0CY+FuBczIndX2UKGgGR0CPqpGn4wh4aAdNjwFoCEdAmPjReXzDoHV9lChoBkdAkI5hQaaTfWgHTWwBaAhHQJj5E9ZA6dV1fZQoaAZHQJ+NG5y2hIxoB02fAmgIR0CY+VHMUypJdX2UKGgGR0CTELYYBNmEaAdNhAFoCEdAmPo190A93nV9lChoBkdAjJkY5cTrV2gHTVkBaAhHQJj7DQVsUIt1fZQoaAZHQIgb37Lt/nZoB0vzaAhHQJj7PzasZHd1fZQoaAZHQIktrbWVeKNoB00tAWgIR0CY+/NHH3lCdX2UKGgGR0CS1zArQPZqaAdN7gFoCEdAmPvh1klNUXV9lChoBkdAhqhkJBw++2gHTScBaAhHQJj9CiZfD1p1fZQoaAZHQIvquHaews5oB01kAWgIR0CY/f3fyf+TdX2UKGgGR0CLSOGTLW7OaAdNOAFoCEdAmP6WFi8WbnV9lChoBkdAlwr4wh4dIWgHTekBaAhHQJj/S04R28t1fZQoaAZHQIWKDKifxtpoB0vpaAhHQJj/qt1ZDAt1fZQoaAZHQIPy5zRx95RoB0vaaAhHQJj/kSUTtb91fZQoaAZHQJdLoOWjXWhoB00QAmgIR0CY/+lFc6eYdX2UKGgGR0CPYBDCxeLOaAdNbAFoCEdAmQBTmW+oL3V9lChoBkdAjNLV94NZvGgHTU8BaAhHQJkA2umrKeV1fZQoaAZHQJQQdLuhK15oB02zAWgIR0CZAL3V09yMdX2UKGgGR0CWbADJU5uJaAdN5gFoCEdAmQDqFIuoP3V9lChoBkdAkpzL+Lm6oWgHTbwBaAhHQJkBqoNutOp1fZQoaAZHQJFRbN3W4ExoB02tAWgIR0CZAc9E1EVndX2UKGgGR0CHO5hFVktmaAdNBAFoCEdAmQI/YODraHV9lChoBkdAkgaA7cO9WmgHTY4BaAhHQJkD2BvrGBF1fZQoaAZHQIYV84rBj4JoB00CAWgIR0CZBGiwSrYHdX2UKGgGR0CLoEWa+evqaAdNPgFoCEdAmQT65wwTNHV9lChoBkdAkbGv9LpRoGgHTYkBaAhHQJkF43vQWvd1fZQoaAZHQJcoPrfLs8hoB03/AWgIR0CZBgbAk9lmdX2UKGgGR0CIy3IEKVpsaAdNGgFoCEdAmQZUKNQ0oHV9lChoBkdAkHQVXA/LT2gHTWEBaAhHQJkGi2UjcEh1fZQoaAZHQIvCNzEJjUdoB01FAWgIR0CZBsMy8BdVdX2UKGgGR0CKas8DB/I9aAdNKAFoCEdAmQeGv8qFy3V9lChoBkdAkc4AOe8PF2gHTYABaAhHQJkHhDx9XtB1fZQoaAZHQI/PiWPcSGtoB01rAWgIR0CZCBNutOmBdX2UKGgGR0CPEgFi8WbgaAdNKwFoCEdAmQgvmT1TSHV9lChoBkdApofpaPjn3mgHTdkDaAhHQJkIvmEGqxV1fZQoaAZHQJbg6K4x1xNoB035AWgIR0CZCbSOBDohdX2UKGgGR0CR5ARGc4HYaAdNjAFoCEdAmQm06tDD0nV9lChoBkdAjYB6shgVoGgHTVABaAhHQJkKmjVQQ+V1fZQoaAZHQI5rFnqVyFRoB008AWgIR0CZCr03fhuPdX2UKGgGR0CYp6QZXMhYaAdNKAJoCEdAmQvkORT0hHV9lChoBkdAkMAf+bVjJGgHTYEBaAhHQJkMqaiKziV1fZQoaAZHQJOOhfNRm9RoB010AWgIR0CZDU9IPK+0dX2UKGgGR0CKWzT6SDAaaAdNLwFoCEdAmQ2YuwosqnV9lChoBkdAjunKFIuoP2gHTXsBaAhHQJkPIpQUHpt1fZQoaAZHQJJt+U+s5n1oB02pAWgIR0CZD0pV0cOtdX2UKGgGR0CNF1eIEbHZaAdNQwFoCEdAmQ9DnaFmF3V9lChoBkdAjmhVDKHO8mgHTWcBaAhHQJkPUIWxhUl1fZQoaAZHQJHIoznA6+5oB02XAWgIR0CZEGceKbazdX2UKGgGR0COSpvJA+pwaAdNWwFoCEdAmRCrRnezlnV9lChoBkdAlOngVCXyAmgHTQECaAhHQJkQ3CoCMgl1fZQoaAZHQIGyKSHM2WJoB0vcaAhHQJkREnMMZxd1fZQoaAZHQJoNgQlKK51oB004AmgIR0CZEXA1ejVQdX2UKGgGR0CQGDAPNFBqaAdNZQFoCEdAmRHA9q1w53V9lChoBkdAoAFprJr+HmgHTXcCaAhHQJkS+0fHPu51fZQoaAZHQJNEZkd3jdZoB02eAWgIR0CZEwL3bmEHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVqwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFEsRhZRoGHSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBAologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoCksRhZRoGHSUUpSMBGhpZ2iUaBAologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksRhZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "_shape": [17], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVtQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgYAAAAAAAAAAQEBAQEBlGgUSwaFlGgYdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoECiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUaBh0lFKUjARoaWdolGgQKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksGhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-Walker2d-v4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d83de1c73d43052e54bc7cc02ddf03abb55a7948fb7581e2bbb940847ea624d
|
3 |
+
size 167180
|
ppo-Walker2d-v4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-Walker2d-v4/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x792724461900>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792724461990>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792724461a20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792724461ab0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x792724461b40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x792724461bd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x792724461c60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792724461cf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x792724461d80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792724461e10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792724461ea0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x792724461f30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79272da6b1c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701553908103281805,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaACAAAAAAAACQVmVlJk/M/us84axoV4z+nXms97e+jPxq6gGvueKW/GUzPW1Ux1r/mVLn7WTKmP4kSdPi5jZg/iSfYagN95L/XEobx4FX3PxrstIBvSQNAhAcTDCSqAMBtesKzinXcvw+OtR97hf2/7PubWifDCMBdd3e+SGjFv/Et93OjvNC/AAAAAAAAJMBr5DhmyBP3P5WT4w1netw/78ZS4o4ZkT8oPofBaXHbv1ER5GjecOK/cF575MX/m78ALxdtAVqavz4jrdKkkem/vq4IJMvhA0DImiY9pVXdP7utkumjOfS/2gm49qhYsT8JmKRZIXgjwAAAAAAAACRAZcipxm75FsAp2RTUjo4aQDi9h4pYetU/9LFOv8pj9T+5Ev63uwfgP4oVnPHgQqq/kc/Hk0r54b8ENgAzUFLnv5PJjn8LB72/1OJqFOIrnb+0YL9+MILev5YL3DrXcgNAf24wYSYQ2z/6eDj/E9YRwNAud+qbixTALr8qfej7BcCAWw4XeebqP6jOOyMUmg3ANBmoYf/rCcAAAAAAAAAkQHHZnV1IWfU/eQkCbBGo1D+vxa/yRf2Qvyz7+8CIn+S/0yfLpO9T5z/7rvuvfhyjPyVMeqwYO5y/oNvOmwcE4j+foAv9QCgEQIxRwTQ9l+q/tGr/3YkxtD9UyXyB4fjLv19iAa1to+u/AAAAAAAAJMDwXk+v2BGlP7Vi7odsZfs/ynhPp+np9D/DDYuijWXxP5Qf4SA/Mt8/0CVLGnBnlD8KaJyX4ISDP9yQMaPGsuU//Qs4jV+foT8Sp9XSYyCKvzkQfC7HjuU/QFQQdZkr/D+Zp1+4fjriv1amvpIQk/4/rHL92e4k7j+GrX2CkjPpv3rxxZI3rhZAiasYOORD6D/aKBYITWzcvzDIhFJ7gRPAK143OMSK7z8E4h4hXM7oPyNhU57MacE/5ihi02QF6L8Lxhz1g3rzv6oHxQQJUcc/YE4hpZRf47+vAsyR527qv0iLrb+GJv0/8KxEFoWq/L/JtkGVNYAPwBx2xAb6efu/yrJ+yaUmHcBAcSkz5iblPyY7U5dG+Q/AJ2bku6y8F8DI+rWkiELRP8PL7UWF1PI/vX4cm0cE0z8y0KfN0dO5vyIURUNcJce/nNMKYHcV6T8Wmhu1kAGlPzPiggctc38/xhLbuRPo0T/DIFGCDY8AQD4wZ8z2egLA+s7o5KT/7T+kkFGK7BADQNrCAo3eqvg/fnUuiSEfDEDrsx5rrB/Qv+CDutH/TZ4/AAAAAAAAJMBVVGp7R5H2Pzq6U8HjddQ/xlWc3qWxfb8O7qTV90Ppv7yQHH7ZVu0/YZKc3DFtoD8mFKiIKXeEP+PWHe+/6uI/BlretrYEBkCNDxEWObzov4EbRz+2JPY/CJPpqzRRlb8XLcwD26cTQLIukDskaBHA8JSmWJHZuj9f0ShJnNfXPwAAAAAAACTAxr27ip8s8z8dv82v7JSoP3Ytd2jNubI/EF6nXbEOyb92aT7KQqfgPwrzTg1yO5q/gmWEF5RZtb9cmnt6ZAnkP+rII7JfrAFA6a9TBSB0pz+CJ8Ax8GbDP2wtO5Y8Qrq/JFvXdtLgDMBH7FqlLEwXQO6Fj0Qj+xVAxlIm3q6ZIcAOdWD63z0hwCRhJEJTFfM/Cv2hQFWe0D/4MmbIJ5q6v8IQ3d8QqcW/LMv8ur845T+jhO8R/ZKTPxpL89CCUIw/felqIMPKs79uVVdDz5j/P3FBBWaNtuA/sge/2kwA/z8bZa47/nkWQAY+WRUcjvw/y3AElWibGUB5azLzObLVPx3SIzipwby/aWyTet5K6j99sxZx01XzP/IzEFSCa6Q/UwaDeBSdsb/uQA7hh+CxPzEl8xWpxOk/poxZThk4cD/YurWuFkGYv22CyskG+Oo/JQ9Gb+Uizj8OA8fiuluXP1LhoNeAtRJAJ8LvmzR2E0B32iaN5qT+P4YelXOZUNY/AAAAAAAAJEAAAAAAAAAkwFrsnri4uMK/hHYElu4b8z+r73PDD/vLP31uOZbLeac/0CPEqwKkKr82ySy9ForpP9CNpuZtErM//tDydY4ziz9lap/zyejqP1vf5pRX3uA/BlWqcMAcjj8JGSKvxz/mP3mpF/BvDOe/nROgUFsK+D/Cc090RooNwC9AnapQmNA/pxwCCqiUqr9gld6AOUfEv421dW8eFvc/HbMKyXS90j8Fy/UcvvHPv46ofJbOFbW/E1/2c04m6T9Ru1tc0SCdP7QZuPJGW4I/Mh3UQcNj6j/xzwcmCaQBQIirnhHTRde/AwClJgpm0D+oyOwSyqPrv9ZayuIFvQ5AdXGkr3CMAEBC8keHtnC+vx/jMXXDges/oB9dzeHKGsBIz0zjEg30P83znOwtYeI/FaoTQjEpkT83F2qxy5nQvw3VTYZ6Z+q/g9n5F5yskL99WqzU/h2xv+tlRDzDX/C/KMn5zQ0Q/j80ctZl8yb9P1qBBaplQhHAcTFY0NANwr8AAAAAAAAkwHNPUFWY1xZA8NcEMVtoHcAWqa9Kv10UQFgaHNUFsxFABA5DzY238T9l92UpMMPZPzSULw9KCpk/4G7Oixn5ub9/6YnyNcbeP/7ZG6sA46I/onzdfgbAu79BZ+2rlX3bP4z2Dpxk5Pk/begC0Cia4r/sMOnUqfv5P8xh4CfAAMc/7pwWlCDP/D8g03oSbzLPv4m7oEGDm+y/+NvryIx9/j+Xh3vWhZfgP0IY4rqvlfc/cae+F2t31z+iuwF3u9uLP6vuXRvBsbG/H4IIZW9c7D82BPZ1LDyhPyO0dmYZbJE//Uo2edKI4T/TA6tvNG0AQLlzOzVpf/S/kXNr4X8vwz8ZaR32AtHWv/Pxgtf91AJAAZ9Nkv9m+L+ExIbYSbzjvzsD54YOJ+O/IKdZNEhu9b+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLEYaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI1dYVTJhfCMAWyUTTYBjAF0lEdAmH7Zd4Vym3V9lChoBkdAhL4yUkfLcWgHS+hoCEdAmH8yYLLIP3V9lChoBkdAgirgzguRLmgHS9RoCEdAmH/dWuHN5nV9lChoBkdAiIwKABkqc2gHTTkBaAhHQJiAPMdLg4x1fZQoaAZHQIbEzJbMX8BoB0vvaAhHQJiApirksBh1fZQoaAZHQIH1WuLaVUxoB0voaAhHQJiBSQHRkVh1fZQoaAZHQIvqDQ1JlJ9oB007AWgIR0CYgcEKmbb2dX2UKGgGR0CLqn7CSA6NaAdNPwFoCEdAmIHdt65Xl3V9lChoBkdAmeIQ+yJKrmgHTS8CaAhHQJiCWFmFrVR1fZQoaAZHQIZr4kiUxEhoB00lAWgIR0CYgvr433pOdX2UKGgGR0CFEwxSpBHDaAdNEgFoCEdAmIVF3EAHV3V9lChoBkdAjxAxekYXPGgHTWEBaAhHQJiGQqtozvZ1fZQoaAZHQJL3XILgGbFoB02fAWgIR0CYhxEQXhwVdX2UKGgGR0CQp8bo8p1BaAdNigFoCEdAmIeIL5RCQnV9lChoBkdAh7cqvFFUhmgHTRUBaAhHQJiIQ1ejVQR1fZQoaAZHQIc0ojW07bNoB00HAWgIR0CYiEZh8YygdX2UKGgGR0BzwpjYqXnhaAdLfWgIR0CY5j+2VmjCdX2UKGgGR0CMr3/LkjoqaAdNMwFoCEdAmOcBHPNVznV9lChoBkdAkJq5aRp1zWgHTXIBaAhHQJjm9Tgl4Tt1fZQoaAZHQIXdW+RHPNVoB00OAWgIR0CY5yez2OABdX2UKGgGR0CEmgknkT6BaAdNLAFoCEdAmOdoKc/dI3V9lChoBkdAkvRzgydnTWgHTbcBaAhHQJjnh6zE74l1fZQoaAZHQIwovAKv3aloB01IAWgIR0CY57plBhQWdX2UKGgGR0CUpP/sE7nxaAdNtwFoCEdAmOg+xW1c+3V9lChoBkdAjJwPmozeoGgHTS0BaAhHQJjqeVyFPBV1fZQoaAZHQJfPRRk3CKtoB00FAmgIR0CY7KII4VASdX2UKGgGR0COEzM36yjYaAdNPAFoCEdAmOyhmoR7JHV9lChoBkdAn/mLwazeGmgHTesCaAhHQJjuzRkVerx1fZQoaAZHQJKTxMwlByFoB01oAWgIR0CY70AJ9iMHdX2UKGgGR0CSmkKYAsClaAdNoQFoCEdAmPArQ1JlKHV9lChoBkdAi4JHhsImgWgHTTIBaAhHQJjwjBRAKOV1fZQoaAZHQJHl/tx+8XhoB02VAWgIR0CY8IOEug6EdX2UKGgGR0CNqoB91EE1aAdNPAFoCEdAmPELA+IM0HV9lChoBkdAlPI0XHim22gHTcQBaAhHQJjzamce8wp1fZQoaAZHQInQES/TLGJoB00TAWgIR0CY9K9ycTakdX2UKGgGR0CU9PGm1pj+aAdN2wFoCEdAmPUDgQ6IWXV9lChoBkdApN/FU83dbmgHTYQDaAhHQJj1RNZeRgZ1fZQoaAZHQJcxIVpKzzFoB03zAWgIR0CY9XiCJ40NdX2UKGgGR0CWhEOxB3RpaAdNBQJoCEdAmPXwY1pCbHV9lChoBkdAjpBwPiDM/2gHTVsBaAhHQJj2dtxdY4h1fZQoaAZHQJbjFwkxASpoB00QAmgIR0CY9wYDTz/ZdX2UKGgGR0CURhu5BkZraAdN1AFoCEdAmPc/fsNUfnV9lChoBkdAiv4RqfvnbWgHTTEBaAhHQJj3OwUxmCl1fZQoaAZHQIzkR6IFeOZoB00tAWgIR0CY+ATyauwHdX2UKGgGR0CAofBeHBUJaAdLrWgIR0CY+FuBczIndX2UKGgGR0CPqpGn4wh4aAdNjwFoCEdAmPjReXzDoHV9lChoBkdAkI5hQaaTfWgHTWwBaAhHQJj5E9ZA6dV1fZQoaAZHQJ+NG5y2hIxoB02fAmgIR0CY+VHMUypJdX2UKGgGR0CTELYYBNmEaAdNhAFoCEdAmPo190A93nV9lChoBkdAjJkY5cTrV2gHTVkBaAhHQJj7DQVsUIt1fZQoaAZHQIgb37Lt/nZoB0vzaAhHQJj7PzasZHd1fZQoaAZHQIktrbWVeKNoB00tAWgIR0CY+/NHH3lCdX2UKGgGR0CS1zArQPZqaAdN7gFoCEdAmPvh1klNUXV9lChoBkdAhqhkJBw++2gHTScBaAhHQJj9CiZfD1p1fZQoaAZHQIvquHaews5oB01kAWgIR0CY/f3fyf+TdX2UKGgGR0CLSOGTLW7OaAdNOAFoCEdAmP6WFi8WbnV9lChoBkdAlwr4wh4dIWgHTekBaAhHQJj/S04R28t1fZQoaAZHQIWKDKifxtpoB0vpaAhHQJj/qt1ZDAt1fZQoaAZHQIPy5zRx95RoB0vaaAhHQJj/kSUTtb91fZQoaAZHQJdLoOWjXWhoB00QAmgIR0CY/+lFc6eYdX2UKGgGR0CPYBDCxeLOaAdNbAFoCEdAmQBTmW+oL3V9lChoBkdAjNLV94NZvGgHTU8BaAhHQJkA2umrKeV1fZQoaAZHQJQQdLuhK15oB02zAWgIR0CZAL3V09yMdX2UKGgGR0CWbADJU5uJaAdN5gFoCEdAmQDqFIuoP3V9lChoBkdAkpzL+Lm6oWgHTbwBaAhHQJkBqoNutOp1fZQoaAZHQJFRbN3W4ExoB02tAWgIR0CZAc9E1EVndX2UKGgGR0CHO5hFVktmaAdNBAFoCEdAmQI/YODraHV9lChoBkdAkgaA7cO9WmgHTY4BaAhHQJkD2BvrGBF1fZQoaAZHQIYV84rBj4JoB00CAWgIR0CZBGiwSrYHdX2UKGgGR0CLoEWa+evqaAdNPgFoCEdAmQT65wwTNHV9lChoBkdAkbGv9LpRoGgHTYkBaAhHQJkF43vQWvd1fZQoaAZHQJcoPrfLs8hoB03/AWgIR0CZBgbAk9lmdX2UKGgGR0CIy3IEKVpsaAdNGgFoCEdAmQZUKNQ0oHV9lChoBkdAkHQVXA/LT2gHTWEBaAhHQJkGi2UjcEh1fZQoaAZHQIvCNzEJjUdoB01FAWgIR0CZBsMy8BdVdX2UKGgGR0CKas8DB/I9aAdNKAFoCEdAmQeGv8qFy3V9lChoBkdAkc4AOe8PF2gHTYABaAhHQJkHhDx9XtB1fZQoaAZHQI/PiWPcSGtoB01rAWgIR0CZCBNutOmBdX2UKGgGR0CPEgFi8WbgaAdNKwFoCEdAmQgvmT1TSHV9lChoBkdApofpaPjn3mgHTdkDaAhHQJkIvmEGqxV1fZQoaAZHQJbg6K4x1xNoB035AWgIR0CZCbSOBDohdX2UKGgGR0CR5ARGc4HYaAdNjAFoCEdAmQm06tDD0nV9lChoBkdAjYB6shgVoGgHTVABaAhHQJkKmjVQQ+V1fZQoaAZHQI5rFnqVyFRoB008AWgIR0CZCr03fhuPdX2UKGgGR0CYp6QZXMhYaAdNKAJoCEdAmQvkORT0hHV9lChoBkdAkMAf+bVjJGgHTYEBaAhHQJkMqaiKziV1fZQoaAZHQJOOhfNRm9RoB010AWgIR0CZDU9IPK+0dX2UKGgGR0CKWzT6SDAaaAdNLwFoCEdAmQ2YuwosqnV9lChoBkdAjunKFIuoP2gHTXsBaAhHQJkPIpQUHpt1fZQoaAZHQJJt+U+s5n1oB02pAWgIR0CZD0pV0cOtdX2UKGgGR0CNF1eIEbHZaAdNQwFoCEdAmQ9DnaFmF3V9lChoBkdAjmhVDKHO8mgHTWcBaAhHQJkPUIWxhUl1fZQoaAZHQJHIoznA6+5oB02XAWgIR0CZEGceKbazdX2UKGgGR0COSpvJA+pwaAdNWwFoCEdAmRCrRnezlnV9lChoBkdAlOngVCXyAmgHTQECaAhHQJkQ3CoCMgl1fZQoaAZHQIGyKSHM2WJoB0vcaAhHQJkREnMMZxd1fZQoaAZHQJoNgQlKK51oB004AmgIR0CZEXA1ejVQdX2UKGgGR0CQGDAPNFBqaAdNZQFoCEdAmRHA9q1w53V9lChoBkdAoAFprJr+HmgHTXcCaAhHQJkS+0fHPu51fZQoaAZHQJNEZkd3jdZoB02eAWgIR0CZEwL3bmEHdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 460,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVqwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFEsRhZRoGHSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBAologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoCksRhZRoGHSUUpSMBGhpZ2iUaBAologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksRhZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float64",
|
59 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
60 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
61 |
+
"_shape": [
|
62 |
+
17
|
63 |
+
],
|
64 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
65 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
66 |
+
"low_repr": "-inf",
|
67 |
+
"high_repr": "inf",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVtQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgYAAAAAAAAAAQEBAQEBlGgUSwaFlGgYdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoECiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUaBh0lFKUjARoaWdolGgQKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksGhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
6
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 2048,
|
87 |
+
"gamma": 0.99,
|
88 |
+
"gae_lambda": 0.95,
|
89 |
+
"ent_coef": 0.0,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 10,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-Walker2d-v4/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22cf46645d34596ca4ab8aa69b49af6a46e00c4a2459b04ac235d4f1cd0fad5d
|
3 |
+
size 99297
|
ppo-Walker2d-v4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba172205f09e676e80e458234e8451c5ed5c778384b730dabd5cb4bad702e210
|
3 |
+
size 49199
|
ppo-Walker2d-v4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-Walker2d-v4/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b5af199f080aef25f276bc6027aa7c41a4389db8f31b324585755db1b27ee49
|
3 |
+
size 1033386
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2300.9262034000003, "std_reward": 45.24056112018392, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-02T22:28:57.158764"}
|