|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
import numpy as np |
|
from torch.nn import functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from torch.cuda.amp import autocast as autocast |
|
|
|
from torch.nn.parallel import DistributedDataParallel |
|
from collections import OrderedDict |
|
from .arch_util import DCNv2Pack |
|
from .common import ResList |
|
|
|
class LayerNormFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, weight, bias, eps): |
|
ctx.eps = eps |
|
N, C, H, W = x.size() |
|
mu = x.mean(1, keepdim=True) |
|
var = (x - mu).pow(2).mean(1, keepdim=True) |
|
y = (x - mu) / (var + eps).sqrt() |
|
ctx.save_for_backward(y, var, weight) |
|
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
eps = ctx.eps |
|
|
|
N, C, H, W = grad_output.size() |
|
y, var, weight = ctx.saved_variables |
|
g = grad_output * weight.view(1, C, 1, 1) |
|
mean_g = g.mean(dim=1, keepdim=True) |
|
|
|
mean_gy = (g * y).mean(dim=1, keepdim=True) |
|
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) |
|
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( |
|
dim=0), None |
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
|
|
def __init__(self, channels, eps=1e-6): |
|
super(LayerNorm2d, self).__init__() |
|
self.register_parameter('weight', nn.Parameter(torch.ones(channels))) |
|
self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) |
|
|
|
class SimpleGate(nn.Module): |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
return x1 * x2 |
|
|
|
class NAFBlock(nn.Module): |
|
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): |
|
super().__init__() |
|
dw_channel = c * DW_Expand |
|
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, |
|
bias=True) |
|
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
|
|
self.sca = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
|
|
|
|
self.sg = SimpleGate() |
|
|
|
ffn_channel = FFN_Expand * c |
|
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.norm1 = LayerNorm2d(c) |
|
self.norm2 = LayerNorm2d(c) |
|
|
|
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
|
|
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) |
|
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) |
|
|
|
def forward(self, inp): |
|
x = inp |
|
|
|
x = self.norm1(x) |
|
|
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.sg(x) |
|
x = x * self.sca(x) |
|
x = self.conv3(x) |
|
|
|
x = self.dropout1(x) |
|
|
|
y = inp + x * self.beta |
|
|
|
x = self.conv4(self.norm2(y)) |
|
x = self.sg(x) |
|
x = self.conv5(x) |
|
|
|
x = self.dropout2(x) |
|
|
|
return y + x * self.gamma |
|
|
|
|
|
class NAF_Video(nn.Module): |
|
|
|
def __init__(self,args, img_channel=4, width=64, middle_blk_num=12, enc_blk_nums=[2, 2, 4, 8], dec_blk_nums=[2, 2, 2, 2]): |
|
super().__init__() |
|
|
|
self.lrelu = nn.LeakyReLU(0.2) |
|
self.convfist = nn.Conv2d(4, 64, 3, 1, 1) |
|
self.feature_extraction = ResList(5, 64) |
|
|
|
self.ending = nn.Conv2d(in_channels=width, out_channels=4, kernel_size=3, padding=1, stride=1, groups=1, |
|
bias=True) |
|
|
|
self.encoders = nn.ModuleList() |
|
self.decoders = nn.ModuleList() |
|
self.middle_blks = nn.ModuleList() |
|
self.ups = nn.ModuleList() |
|
self.downs = nn.ModuleList() |
|
|
|
chan = width |
|
for num in enc_blk_nums: |
|
self.encoders.append( |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(num)] |
|
) |
|
) |
|
self.downs.append( |
|
nn.Conv2d(chan, 2*chan, 2, 2) |
|
) |
|
chan = chan * 2 |
|
|
|
self.middle_blks = \ |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(middle_blk_num)] |
|
) |
|
|
|
for num in dec_blk_nums: |
|
self.ups.append( |
|
nn.Sequential( |
|
nn.Conv2d(chan, chan * 2, 1, bias=False), |
|
nn.PixelShuffle(2) |
|
) |
|
) |
|
chan = chan // 2 |
|
self.decoders.append( |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(num)] |
|
) |
|
) |
|
|
|
self.padder_size = 2 ** len(self.encoders) |
|
|
|
def forward(self, x): |
|
|
|
center = x |
|
|
|
x = self.lrelu(self.convfist(x)) |
|
x = self.feature_extraction(x) |
|
|
|
encs = [] |
|
|
|
|
|
for encoder, down in zip(self.encoders, self.downs): |
|
x = encoder(x) |
|
encs.append(x) |
|
x = down(x) |
|
|
|
x = self.middle_blks(x) |
|
|
|
|
|
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): |
|
x = up(x) |
|
x = x + enc_skip |
|
x = decoder(x) |
|
|
|
x = self.ending(x) |
|
|
|
x = x + center |
|
|
|
return x |
|
|
|
|
|
def load_networks(network, resume, strict=True): |
|
load_path = resume |
|
|
|
if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): |
|
network = network.module |
|
load_net = torch.load(load_path, map_location=torch.device('cuda')) |
|
load_net_clean = OrderedDict() |
|
for k, v in load_net.items(): |
|
if k.startswith('module.'): |
|
load_net_clean[k[7:]] = v |
|
else: |
|
load_net_clean[k] = v |
|
|
|
network.load_state_dict(load_net_clean, strict=True) |
|
|