File size: 3,997 Bytes
f8d6c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import cv2
import json
import torch
import torchvision.transforms as transforms
from CPNet_model import LiteAWBISPNet
import torchvision
import numpy as np
from Utiles import white_balance,apply_color_space_transform, transform_xyz_to_srgb, apply_gamma,fix_orientation,binning,Four2One,One2Four
import time
from net.mwrcanet import Net
import torch.nn as nn
from PIL import Image
import torch.nn.functional as F

#######Set Raw path###########
Rpath = './Input'
image_files = []

####### Temp ###############################


infer_times = []


#######Color Matrix from Baseline#############
color_matrix = [1.06835938, -0.29882812, -0.14257812,
                -0.43164062, 1.35546875, 0.05078125,
                -0.1015625, 0.24414062, 0.5859375]


#######Data Transfer###########################
transforms_ = [ transforms.ToTensor(),
                transforms.Resize([768,1024])]
transform = transforms.Compose(transforms_)

transforms_ = [ transforms.ToTensor()]
transformo = transforms.Compose(transforms_)

########Load  the pretrained refinement model####
model = LiteAWBISPNet()
model.cuda()
model.load_state_dict(torch.load('./model_zoo/CC2.pth') )

######load pretrianed Denoised model##############
last_ckpt = './model_zoo/dn_mwrcanet_raw_c1.pth'
dn_net = Net()
dn_model = nn.DataParallel(dn_net).cuda()
tmp_ckpt = torch.load(last_ckpt)
pretrained_dict = tmp_ckpt['state_dict']
model_dict=dn_model.state_dict()
pretrained_dict_update = {k: v for k, v in pretrained_dict.items() if k in model_dict}
assert(len(pretrained_dict)==len(pretrained_dict_update))
assert(len(pretrained_dict_update)==len(model_dict))
model_dict.update(pretrained_dict_update)
dn_model.load_state_dict(model_dict)

############################Start Processing!#########

for filename in os.listdir(Rpath):

    if os.path.splitext(filename)[-1].lower() == ".png":
        image_files.append(filename)

with torch.no_grad():
  for fp in image_files:
  
      fp = os.path.join(Rpath, fp)
      mn = os.path.splitext(fp)[-2]
      mf = str(mn) + '.json'
  
      raw_image = cv2.imread(fp, -1)
      with open(mf, 'r') as file:
          data = json.load(file)
  
  ############Bleack & Whilte##########################
      time_BL_S = time.time()
      
      raw_image = (raw_image.astype(np.float32) - 256.)
      raw_image = raw_image / (4095. - 256.)
      raw_image = np.clip(raw_image, 0.0, 1.0)
      
  
  
  #############  Binning   ############################
  
      raw_image = binning(raw_image,data)
  
          
  ############# Down sample ###########################
  
      
      raw_image = cv2.resize(raw_image, [1024,768])
      
  
  ############   Raw Denoise  ##########################
        
      Temp_I = Four2One(raw_image)
      Temp_I = transformo(Temp_I).unsqueeze(0).cuda()
      Temp_I = dn_model(Temp_I)
      Temp_I = np.asarray(Temp_I.squeeze(0).squeeze(0).cpu())
      raw_image = One2Four(Temp_I)
      #raw_image = cv2.resize(raw_image, [1024,768])                   
   
  #############White Balance, Color M, Vignet #########
      
      raw_image = white_balance(raw_image, data['as_shot_neutral'])
      raw_image = apply_color_space_transform(raw_image, color_matrix)
      raw_image = transform_xyz_to_srgb(raw_image)
      raw_image = apply_gamma(raw_image)

          
  #############Refinement#############################
  
      Source = transform(raw_image).unsqueeze(0).float().cuda()
      Out = model(Source)

  #################Saving#############################

      Out = Out.clip(0,1)
      OA = np.asarray(Out.squeeze(0).cpu()).transpose(1,2,0).astype(np.float32)
      OA = OA*255.
      OA = OA.astype(np.uint8)
      OA = fix_orientation(OA,data["orientation"])
      time_Save_F = time.time()
      OA = cv2.cvtColor(OA, cv2.COLOR_RGB2BGR)
      OA = cv2.imwrite('./Output/' + str(os.path.basename(fp)),OA)

      infer_times.append(time_Save_F-time_BL_S)
print(f"Average inference time: {np.mean(infer_times)} seconds")