File size: 3,997 Bytes
f8d6c27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
import cv2
import json
import torch
import torchvision.transforms as transforms
from CPNet_model import LiteAWBISPNet
import torchvision
import numpy as np
from Utiles import white_balance,apply_color_space_transform, transform_xyz_to_srgb, apply_gamma,fix_orientation,binning,Four2One,One2Four
import time
from net.mwrcanet import Net
import torch.nn as nn
from PIL import Image
import torch.nn.functional as F
#######Set Raw path###########
Rpath = './Input'
image_files = []
####### Temp ###############################
infer_times = []
#######Color Matrix from Baseline#############
color_matrix = [1.06835938, -0.29882812, -0.14257812,
-0.43164062, 1.35546875, 0.05078125,
-0.1015625, 0.24414062, 0.5859375]
#######Data Transfer###########################
transforms_ = [ transforms.ToTensor(),
transforms.Resize([768,1024])]
transform = transforms.Compose(transforms_)
transforms_ = [ transforms.ToTensor()]
transformo = transforms.Compose(transforms_)
########Load the pretrained refinement model####
model = LiteAWBISPNet()
model.cuda()
model.load_state_dict(torch.load('./model_zoo/CC2.pth') )
######load pretrianed Denoised model##############
last_ckpt = './model_zoo/dn_mwrcanet_raw_c1.pth'
dn_net = Net()
dn_model = nn.DataParallel(dn_net).cuda()
tmp_ckpt = torch.load(last_ckpt)
pretrained_dict = tmp_ckpt['state_dict']
model_dict=dn_model.state_dict()
pretrained_dict_update = {k: v for k, v in pretrained_dict.items() if k in model_dict}
assert(len(pretrained_dict)==len(pretrained_dict_update))
assert(len(pretrained_dict_update)==len(model_dict))
model_dict.update(pretrained_dict_update)
dn_model.load_state_dict(model_dict)
############################Start Processing!#########
for filename in os.listdir(Rpath):
if os.path.splitext(filename)[-1].lower() == ".png":
image_files.append(filename)
with torch.no_grad():
for fp in image_files:
fp = os.path.join(Rpath, fp)
mn = os.path.splitext(fp)[-2]
mf = str(mn) + '.json'
raw_image = cv2.imread(fp, -1)
with open(mf, 'r') as file:
data = json.load(file)
############Bleack & Whilte##########################
time_BL_S = time.time()
raw_image = (raw_image.astype(np.float32) - 256.)
raw_image = raw_image / (4095. - 256.)
raw_image = np.clip(raw_image, 0.0, 1.0)
############# Binning ############################
raw_image = binning(raw_image,data)
############# Down sample ###########################
raw_image = cv2.resize(raw_image, [1024,768])
############ Raw Denoise ##########################
Temp_I = Four2One(raw_image)
Temp_I = transformo(Temp_I).unsqueeze(0).cuda()
Temp_I = dn_model(Temp_I)
Temp_I = np.asarray(Temp_I.squeeze(0).squeeze(0).cpu())
raw_image = One2Four(Temp_I)
#raw_image = cv2.resize(raw_image, [1024,768])
#############White Balance, Color M, Vignet #########
raw_image = white_balance(raw_image, data['as_shot_neutral'])
raw_image = apply_color_space_transform(raw_image, color_matrix)
raw_image = transform_xyz_to_srgb(raw_image)
raw_image = apply_gamma(raw_image)
#############Refinement#############################
Source = transform(raw_image).unsqueeze(0).float().cuda()
Out = model(Source)
#################Saving#############################
Out = Out.clip(0,1)
OA = np.asarray(Out.squeeze(0).cpu()).transpose(1,2,0).astype(np.float32)
OA = OA*255.
OA = OA.astype(np.uint8)
OA = fix_orientation(OA,data["orientation"])
time_Save_F = time.time()
OA = cv2.cvtColor(OA, cv2.COLOR_RGB2BGR)
OA = cv2.imwrite('./Output/' + str(os.path.basename(fp)),OA)
infer_times.append(time_Save_F-time_BL_S)
print(f"Average inference time: {np.mean(infer_times)} seconds")
|