File size: 20,765 Bytes
82567db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
import os
import multiprocessing as mp
import numpy as np
import cv2 as cv
from tqdm import tqdm
from glob import glob
from utils import *
from grayness_index import GraynessIndex
import torch
import torch.nn.functional as F
from time import time
from network_raw_denoise import sc_net_1f
from network import MWRCANv4 as NET
from classes.fc4.ModelFC4 import ModelFC4
def load_img(img_path):
meta_all = {}
meta_all['img_path'] = img_path
# load meta
metadata = json_read(img_path.replace(".png", ".json"), object_hook=fraction_from_json)
meta_all['meta'] = metadata
# load image
img = cv.imread(img_path, cv.IMREAD_UNCHANGED)
meta_all['img'] = img
return meta_all
def pre_process(meta_all):
img = meta_all['img']
metadata = meta_all['meta']
cfa_pattern = metadata['cfa_pattern']
cfa_pattern_ = ""
for tt in cfa_pattern:
if tt == 0:
cfa_pattern_ += "r"
elif tt == 1:
cfa_pattern_ += "g"
elif tt == 2:
cfa_pattern_ += "b"
else:
raise
offsets = bayer_to_offsets(cfa_pattern_)
img = pack_raw_to_4ch(img, offsets)
if img.shape[0] != 768 and img.shape[1] != 1024:
img = cv.resize(img, (1024, 768), interpolation=cv.INTER_AREA) # RGB
bl_fix = np.clip((float(metadata["noise_profile"][0])-0.005) * 1000, 0, 10)
img = normalize(img, metadata['black_level'], metadata['white_level'], bl_fix).astype(np.float32)
noise_profile = float(metadata["noise_profile"][0])
noise_list = [0.00025822882, 0.000580020745, 0.00141667975, 0.00278965863, 0.00347614807]
if noise_profile < 0.005:
if noise_profile < noise_list[0]:
weight1 = noise_profile / noise_list[0]
final_lsc = lsc_npy[0] * weight1
linear_idx1, linear_idx2 = 0, 0
elif noise_profile > noise_list[-1]:
final_lsc = lsc_npy[-1]
linear_idx1, linear_idx2 = -1, -1
else:
for idx, nn in enumerate(noise_list):
if noise_profile < nn:
linear_idx1 = idx - 1
linear_idx2 = idx
break
weight1 = (noise_profile - noise_list[linear_idx1]) / (noise_list[linear_idx2] - noise_list[linear_idx1])
weight2 = 1-weight1
final_lsc = lsc_npy[linear_idx1] * weight1 + lsc_npy[linear_idx2] * weight2
ones = np.ones_like(final_lsc)
final_lsc = final_lsc * 0.6 + ones * 0.4
final_lsc[:, :512, :] = final_lsc[:, 1024:511:-1, :]
img = img * final_lsc
img = np.clip(img, 0.0, 1.0)
meta_all["img"] = img
rgb_gain = metadata['as_shot_neutral']
ra, ga, ba = rgb_gain
ra, ga, ba = 1/ra, 1/ga, 1/ba
meta_all['r_gains'] = [ra]
meta_all['g_gains'] = [ga]
meta_all['b_gains'] = [ba]
return meta_all
def raw_denoise(results):
checkpoint_path = "checkpoint/raw_denoise.pth"
device = torch.device("cuda")
model = get_net(sc_net_1f, checkpoint_path, device)
for meta_all in tqdm(results):
img = meta_all['img']
img = np.expand_dims(img, axis=0)
ori_inp = img.copy()
clip_min = max(np.mean(img)*3, 0.9)
img = np.clip(img, 0, clip_min)
img = torch.from_numpy(img.transpose(0, 3, 1, 2)).cuda()
with torch.no_grad():
output = model(img)
output = output.detach().cpu().numpy().transpose(0, 2, 3, 1)
img = ori_inp + output
img = np.clip(img, 0, 1)
img = np.squeeze(img)
meta_all['img'] = img
def predict_white_balance(results):
model = ModelFC4()
for model_index in [0, 1, 2]:
path_to_pretrained = os.path.join("./trained_models", "fc4_cwp", "fold_{}".format(model_index))
model.load(path_to_pretrained)
model.evaluation_mode()
for meta_all in tqdm(results):
img = meta_all['img'].copy()
img[:, :, 1] = (img[:, :, 1] + img[:, :, 3]) / 2
img = img[:, :, :-1]
img = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).cuda()
img_tmp = torch.pow(img, 1.0 / 2.2)
with torch.no_grad():
pred = model.predict(img_tmp, return_steps=False)
pred = pred.detach().cpu().squeeze(0).numpy()
# rgb gain
r, g, b = pred
r /= g
b /= g
g /= g
r = 1./ r
g = 1./ g
b = 1./ b
meta_all['r_gains'].append(r)
meta_all['g_gains'].append(g)
meta_all['b_gains'].append(b)
def convert_to_rgb(meta_all):
img = meta_all['img']
img[:, :, 1] = (img[:, :, 1] + img[:, :, 3]) / 2
img = img[:, :, :-1]
# WB
r_gains = sorted(meta_all['r_gains'])
b_gains = sorted(meta_all['b_gains'])
r_final = (r_gains[0] + r_gains[1] + r_gains[2]) / 3
g_final = 1
b_final = (b_gains[1] + b_gains[2] + b_gains[3]) / 3
img[:, :, 0] *= r_final
img[:, :, 1] *= g_final
img[:, :, 2] *= b_final
img = np.clip(img, 0, 1)
# CC
img = apply_color_space_transform(img, color_matrix, color_matrix)
# convert RGB
img = transform_xyz_to_srgb(img)
# shading fix
if float(meta_all['meta']["noise_profile"][0]) > 0.005:
lsc_m = lsc ** ((float(meta_all['meta']["noise_profile"][0])-0.005) * 100)
lsc_inv = 1 / lsc
lsc_inv = np.mean(lsc_inv, axis=-1, keepdims=True)
gray = cv.cvtColor(img.astype(np.float32), cv.COLOR_RGB2GRAY)
gray = gray[:, :, np.newaxis]
lsc_inv = lsc_inv * np.clip(gray*10, 0, 1) * np.clip((2 - (float(meta_all['meta']["noise_profile"][0])-0.005) * 100), 1, 2)
lsc_inv = np.clip(lsc_inv, 0.4, 1)
img = img * lsc_inv + gray * (1-lsc_inv)
img = img / lsc_m
# tonemaping
img = apply_tone_map(img)
# gamma
img = apply_gamma(img).astype(np.float32)
img = np.clip(img, 0, 1)
# contrast enhancement
mm = np.mean(img)
meta_all['mm'] = mm
if mm <= 0.1:
pass
elif float(meta_all['meta']["noise_profile"][0]) > 0.01:
yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)
y, u, v = cv.split(yuv)
y = autocontrast_using_pil(y)
yuv = np.stack([y, u, v], axis=-1)
rgb = cv.cvtColor(yuv, cv.COLOR_YUV2BGR)
rgb = np.clip(rgb, 0, 1)
img = img * 0.5 + rgb * 0.5
img = np.clip(img*255, 0, 255).round().astype(np.uint8)
if float(meta_all['meta']["noise_profile"][0]) > 0.02:
noise_params = 6
else:
noise_params = 3
img = cv.fastNlMeansDenoisingColored(img, None, noise_params, noise_params, 7, 21)
img = img.astype(np.float32) / 255.
img = usm_sharp(img)
else:
img = autocontrast_using_pil(img)
# gamma again
img = np.clip(img, 0, 1)
img_con = img ** (1/1.5)
gray = np.max(img_con, axis=-1, keepdims=True) # - 0.1
gray = np.clip(gray, 0.3, 1)
img = img_con * gray + img * (1-gray)
# AWB again
img = img[:, :, ::-1] # BGR
gi = GraynessIndex()
pred_illum = gi.apply(img)
r, g, b = pred_illum
pred_illum = pred_illum / g
r, g, b = pred_illum
if r < 1:
img = white_balance(img, pred_illum) # BGR
img = img[:, :, ::-1]
img = np.clip(img, 0, 1) # RGB
# fix orientation
img = fix_orientation(img, meta_all['meta']["orientation"])
meta_all['img'] = img # RGB
return meta_all
def nn_enhancement(results):
checkpoint_path1 = "checkpoint/nn_enhance.pth"
device = torch.device("cuda")
model = get_net(NET, checkpoint_path1, device)
for meta_all in tqdm(results):
# mm = meta_all['mm']
# if mm <= 0.1 or float(meta_all['meta']["noise_profile"][0]) > 0.01:
# meta_all['img'] = meta_all['img'] * 255
# continue
img = meta_all['img']
img = img.astype(np.float32)
img = torch.from_numpy(img.copy().transpose(2, 0, 1)).unsqueeze(0).to(device)
with torch.no_grad():
img = model(img)
# img = img
img = img.detach().cpu().squeeze(0).numpy().transpose(1, 2, 0)
img = np.clip(img, 0, 1)
img = img * 255.
img = img.round()
img = img.astype(np.uint8)
meta_all['img'] = img # RGB U8
def post_process(meta_all):
# color fix
img = meta_all['img'] # RGB U8
# increase saturation
increment=0.5
ori_img = img.copy() # RGB U8
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float32)
_, L, S = cv2.split(hls)
S = S / 255.
img = img.astype(np.float32)
temp = increment + S
mask_2 = temp > 1 # 大于1的位置
alpha_1 = S
alpha_2 = 1 - increment
alpha = alpha_1 * mask_2 + alpha_2 * (1 - mask_2)
L = L[:, :, np.newaxis]
alpha = alpha[:, :, np.newaxis]
alpha = 1/alpha -1
img = img + (img - L) * alpha
img = np.clip(img, 0, 255)
ori_img = ori_img.astype(np.float32)
mask = ori_img[:, :, 2] / 255.
# mask = np.max(ori_img, axis=-1) / 255.
mask = mask[:, :, np.newaxis]
mask = np.clip(mask - 0.1, 0, 1)
img = img * mask + ori_img * (1-mask)
img = np.clip(img, 0, 255).round().astype(np.uint8)
# decrease saturation
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
hsv = hsv.astype(np.float32)
# 绿 青
mmax = 105
mmin = 40
alpha = 1 # 越大效果越猛, 误伤越多
beta = 4 # 越大效果越猛
gamma = 0.1 # 越小效果越猛
mid = mmin + ((mmax - mmin) / 2)
green_weight = np.abs(hsv[:, :, 0] - mid) / ((mmax - mmin)/2)
green_weight = np.clip(green_weight, 0, 1)
# green_weight = np.tanh(green_weight/alpha)
green_weight = green_weight**beta + gamma
green_weight = np.clip(green_weight, 0, 1)
green_weight = cv2.blur(green_weight, (11, 11))
hsv[:, :, 2] = hsv[:, :, 2] * green_weight
# 紫 洋红
mmax = 180
mmin = 130
alpha = 1 # 越大效果越猛, 误伤越多
beta = 8
# 越大效果越猛
gamma = -0.5 # 越小效果越猛
mid = mmin + ((mmax - mmin) / 2)
green_weight = np.abs(hsv[:, :, 0] - mid) / ((mmax - mmin)/2)
green_weight = np.clip(green_weight, 0, 1)
# green_weight = np.tanh(green_weight/alpha)
green_weight = (green_weight**beta + gamma) * 2
green_weight = np.clip(green_weight, 0, 1)
green_weight = cv2.blur(green_weight, (11, 11))
hsv[:, :, 2] = hsv[:, :, 2] * green_weight
hsv = np.clip(hsv, 0, 255)
hsv = hsv.round().astype(np.uint8)
img = cv2.cvtColor(hsv, cv2.COLOR_HLS2RGB) # RGB U8
img = np.clip(img, 0, 255)
img = np.clip(img, 0, 255).round().astype(np.uint8)
meta_all['img'] = img # RGB U8
return meta_all
def sky_enhancement(results):
model_path = "sky_seg.pt"
model = torch.load(model_path)
model.cuda()
model.eval()
for meta_all in tqdm(results):
if float(meta_all['meta']["noise_profile"][0]) >= 0.005:
continue
ori_img = meta_all['img'].copy().astype(np.float32) # RGB 0-255 U8
img = ori_img.copy()
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# 天空分割
scene_image = img.copy().astype(np.float32) # 0-255, bgr
img = img / 255.
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# 减少色温
lab[:,:,1] = lab[:,:,1] - (lab[:,:,2] + 127) * 0.03
lab[:,:,2] = lab[:,:,2] - (lab[:,:,2] + 127) * 0.1
# 将图像从LAB空间转换回BGR空间
img = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
img = img * 255
img = np.clip(img, 0, 255).round().astype(np.float32)
img_mean = 0
img_std = 255.0
size = (512, 512)
img_h , img_w = img.shape[:2]
img = cv2.resize(img, size)
img = (img - img_mean) / img_std
img = np.transpose(img, [2, 0, 1])
img = np.expand_dims(img, axis=0)
img = torch.from_numpy(img).cuda()
with torch.no_grad():
mask = model(img)
mask = mask.detach().cpu()
mask = mask.permute((0,3,1,2))
mask = F.interpolate(mask,
size=[img_h , img_w],
mode='bilinear')
mask = mask[0].permute((1,2,0))
sky_mask = torch.argmax(mask, axis=2).numpy().astype(np.float32)
if sky_mask.max() < 0.1:
continue
#
img = ori_img.copy() # RGB
mask = img[:, :, 2] - np.max(img[:, :, :2], axis=-1)
mask[sky_mask==0]=0
a = np.sum(mask)
b = np.sum(sky_mask)
ratio_blue = a/b
# print(meta_all['img_path'], "blue ratio", ratio_blue)
# 非蓝天
if ratio_blue < 10:
img = ori_img.copy()
mask = np.mean(img[:, :, :2], axis=-1)
mask[sky_mask==0]=0
a = np.sum(mask)
b = np.sum(sky_mask)
ratio_light = a/b
# print(meta_all['img_path'], "light ratio", ratio_light)
# 暗天空,压暗
if ratio_light<50:
img = ori_img.copy()
img = img * 0.88
img = np.clip(img, 0, 255) # RGB
# 中等亮度,提亮
elif ratio_light < 200:
img = ori_img.copy()
img = img * 1.1
img = np.clip(img, 0, 255) # RGB
else:
pass
hsv = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2HSV).astype(np.float32)
hsv[:, :, 1] = hsv[:, :, 1]* 0.4
hsv = np.clip(hsv, 0, 255).astype(np.uint8)
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB).astype(np.float32)
# 蓝天
else:
# LAB
img = ori_img.copy()
img = img / 255.
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
# 减少色温
lab[:,:,1] = lab[:,:,1] - (lab[:,:,2] + 127) * 0.03
lab[:,:,2] = lab[:,:,2] - (lab[:,:,2] + 127) * 0.1
# 将图像从LAB空间转换回BGR空间
img = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
img = img * 255
img = np.clip(img, 0, 255).round().astype(np.float32)
sky_image = img.copy().astype(np.float32) # 0-255, RGB
sky_image = cv2.cvtColor(sky_image, cv2.COLOR_RGB2BGR) # BGR 0-255 F32
sky_mask_ori = sky_mask.copy()
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
sky_mask_ori = cv2.erode(sky_mask_ori, kernel)
sky_mask_ori = sky_mask_ori > 0.9
if np.sum(sky_mask_ori) > 0:
h, w = sky_mask.shape
sky_mask = cv2.resize(sky_mask, None, fx=0.1, fy=0.1, interpolation=cv2.INTER_NEAREST)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
sky_mask = cv2.dilate(sky_mask, kernel)
sky_mask_blur = cv2.blur(sky_mask, (21, 21))
sky_mask_blur[sky_mask>0.5] = sky_mask[sky_mask>0.5]
sky_mask = sky_mask_blur
sky_mask = cv2.resize(sky_mask, (w, h), interpolation=cv2.INTER_LINEAR)
sky_mask = np.clip(sky_mask, 0.1, 1)
sky_area_img = np.zeros_like(sky_image)
sky_area_img[sky_mask_ori] = sky_image[sky_mask_ori]
sky_area_img = cv2.cvtColor(sky_area_img, cv2.COLOR_BGR2GRAY)
sky_area_img_mean = np.sum(sky_area_img) / np.sum(sky_mask_ori)
if sky_area_img_mean > 20:
res = pyrblend(scene_image, sky_image, sky_mask)
res = np.clip(res, 0, 255) # 0-255, bgr
res = res.round().astype(np.uint8)
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB) # RGB 0-255 U8
meta_all['img'] = res
def post_process2(meta_all):
# PIL
img = meta_all['img'].copy() # RGB U8
img = img.astype(np.float32) / 255.
yuv = cv.cvtColor(img, cv.COLOR_RGB2YUV)
y, u, v = cv.split(yuv)
y = autocontrast_using_pil(y)
yuv = np.stack([y, u, v], axis=-1)
rgb = cv.cvtColor(yuv, cv.COLOR_YUV2RGB)
rgb = np.clip(rgb, 0, 1)
img = rgb
img = np.clip(img*255, 0, 255)# .round().astype(np.uint8) # RGB
ori_img = meta_all['img'].copy().astype(np.float32)
mask = np.mean(ori_img, axis=-1) / 255.
mask = mask[:, :, np.newaxis]
mask = np.clip(mask - 0.1, 0, 1)
img = img * mask + ori_img * (1-mask)
img = np.clip(img, 0, 255)
img = img.round().astype(np.uint8)
meta_all['img'] = img
return meta_all
def save_jpg(meta_all):
img = meta_all['img'] # RGB U8
out_path = os.path.join(output_path, meta_all['img_path'].split("/")[-1].split(".")[0] + ".jpg")
cv.imwrite(out_path, img[:, :, ::-1], [cv.IMWRITE_JPEG_QUALITY, 100])
if __name__ == "__main__":
num_worker = 4
all_time = time()
input_path = "/data"
output_path = "/data"
# input_path = "/ssd/ntire24/nightrender/data/data"
# output_path = "/ssd/ntire24/nightrender/data/data"
os.makedirs(output_path, exist_ok=True)
# load img
s_time = time()
input_list = sorted(glob(os.path.join(input_path, "*.png")))# [:4]
if num_worker > 1:
with mp.Pool(num_worker) as pool:
results = list(tqdm(pool.imap(load_img, input_list), total=len(input_list)))
else:
results = []
for p in tqdm(input_list):
results.append(load_img(p))
load_time = time()-s_time
print("load_img time is: ", load_time)
# preprocess
s_time = time()
iso_list = [50, 125, 320, 640, 800]
lsc_npy = [np.load("./lsc_npy/{}.npy".format(iso)) for iso in iso_list]
if num_worker > 1:
with mp.Pool(num_worker) as pool:
results = list(tqdm(pool.imap(pre_process, results), total=len(results)))
else:
for r in tqdm(results):
r = pre_process(r)
del lsc_npy
print("pre_process time is: ", time()-s_time)
# raw denoise
s_time = time()
raw_denoise(results)
print("raw_denoise time is: ", time()-s_time)
# awb
s_time = time()
predict_white_balance(results)
print("predict_white_balance time is: ", time()-s_time)
# convert
s_time = time()
color_matrix = [1.06835938, -0.29882812, -0.14257812, -0.43164062, 1.35546875, 0.05078125, -0.1015625, 0.24414062, 0.5859375]
lsc = np.load("lsc.npy")
if num_worker > 1:
with mp.Pool(num_worker) as pool:
results = list(tqdm(pool.imap(convert_to_rgb, results), total=len(results)))
else:
for r in tqdm(results):
r = convert_to_rgb(r)
del lsc
print("convert_to_rgb time is: ", time()-s_time)
# NN_enhancement
s_time = time()
nn_enhancement(results)
print("nn_enhancement time is: ", time()-s_time)
# colorfix & sat enhance
s_time = time()
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
if num_worker > 1:
with mp.Pool(num_worker) as pool:
results = list(tqdm(pool.imap(post_process, results), total=len(results)))
else:
for r in tqdm(results):
r = post_process(r)
print("post_process time is: ", time()-s_time)
# sky_enhancement
s_time = time()
sky_enhancement(results)
print("sky_enhancement time is: ", time()-s_time)
# PIL autocontrast
s_time = time()
if num_worker > 1:
with mp.Pool(num_worker) as pool:
results = list(tqdm(pool.imap(post_process2, results), total=len(results)))
else:
for r in tqdm(results):
r = post_process2(r)
print("post_process2 time is: ", time()-s_time)
# save jpg
s_time = time()
if num_worker > 1:
with mp.Pool(num_worker) as pool:
_ = list(tqdm(pool.imap(save_jpg, results), total=len(results)))
else:
for r in tqdm(results):
save_jpg(r)
save_time = time()-s_time
print("save_jpg time is: ", save_time)
total_time = time()-all_time
total_time_without_load_save = total_time - load_time - save_time
print("per image inference time (without load and save) is: ", total_time_without_load_save / len(results), "s") |