File size: 1,820 Bytes
82567db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
from typing import Tuple

import numpy as np
import scipy.io
import torch
import torch.utils.data as data

from auxiliary.utils import normalize, bgr_to_rgb, linear_to_nonlinear, hwc_to_chw
from classes.data.DataAugmenter import DataAugmenter


class ColorCheckerDataset(data.Dataset):

    def __init__(self, train: bool = True, folds_num: int = 1):

        self.__train = train
        self.__da = DataAugmenter()

        path_to_folds = os.path.join("dataset", "folds.mat")
        path_to_metadata = os.path.join("dataset", "metadata.txt")
        self.__path_to_data = os.path.join("dataset", "preprocessed", "numpy_data")
        self.__path_to_label = os.path.join("dataset", "preprocessed", "numpy_labels")

        folds = scipy.io.loadmat(path_to_folds)
        img_idx = folds["tr_split" if self.__train else "te_split"][0][folds_num][0]

        metadata = open(path_to_metadata, 'r').readlines()
        self.__fold_data = [metadata[i - 1] for i in img_idx]

    def __getitem__(self, index: int) -> Tuple:
        file_name = self.__fold_data[index].strip().split(' ')[1]
        img = np.array(np.load(os.path.join(self.__path_to_data, file_name + '.npy')), dtype='float32')
        illuminant = np.array(np.load(os.path.join(self.__path_to_label, file_name + '.npy')), dtype='float32')

        if self.__train:
            img, illuminant = self.__da.augment(img, illuminant)
        else:
            img = self.__da.crop(img)

        img = hwc_to_chw(linear_to_nonlinear(bgr_to_rgb(normalize(img))))

        img = torch.from_numpy(img.copy())
        illuminant = torch.from_numpy(illuminant.copy())

        if not self.__train:
            img = img.type(torch.FloatTensor)

        return img, illuminant, file_name

    def __len__(self) -> int:
        return len(self.__fold_data)