File size: 16,175 Bytes
6721043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
import matplotlib.pyplot as plt


def default_conv(in_channels, out_channels, kernel_size,stride=1, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2),stride=stride, bias=bias)

def conv1x1(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=1,
                     stride=stride, padding=0, bias=True)

def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3,
                     stride=stride, padding=1, bias=True)

def conv5x5(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=5,
                     stride=stride, padding=2, bias=True)

def make_layer(basic_block, num_basic_block, **kwarg):
    """Make layers by stacking the same blocks.

    Args:
        basic_block (nn.module): nn.module class for basic block.
        num_basic_block (int): number of blocks.

    Returns:
        nn.Sequential: Stacked blocks in nn.Sequential.
    """
    layers = []
    for _ in range(num_basic_block):
        layers.append(basic_block(**kwarg))
    return nn.Sequential(*layers)  #30个 (0): ResidualBlockNoBN(

class RBNoBN(nn.Module):
    """Residual block without BN.

    Args:
        num_feat (int): Channel number of intermediate features.
            Default: 64.
        res_scale (float): Residual scale. Default: 1.
        pytorch_init (bool): If set to True, use pytorch default init,
            otherwise, use default_init_weights. Default: False.
    """

    def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
        super(RBNoBN, self).__init__()
        self.res_scale = res_scale
        self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
        self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
        self.relu = nn.ReLU(inplace=True)

        if not pytorch_init:
            default_init_weights([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = self.conv2(self.relu(self.conv1(x)))
        return identity + out * self.res_scale
    
class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None, res_scale=1):
        super(ResBlock, self).__init__()
        self.res_scale = res_scale
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)

    def forward(self, x):
        x1 = x
        out = self.conv1(x)
        out = self.relu(out)
        out = self.conv2(out)
        out = out * self.res_scale + x1
        return out
    
# class ConvResidualBlocks(nn.Module):
#     """Conv and residual block used in BasicVSR.

#     Args:
#         num_in_ch (int): Number of input channels. Default: 3.
#         num_out_ch (int): Number of output channels. Default: 64.
#         num_block (int): Number of residual blocks. Default: 15.
#     """

#     def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15):
#         super().__init__()
#         self.main = nn.Sequential(
#             nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.2, inplace=True),
#             make_layer(RBNoBN, num_block, num_feat=num_out_ch))

#     def forward(self, fea):
#         return self.main(fea)

class Encoder_input(nn.Module):
    def __init__(self, num_res_blocks, n_feats, img_channel, res_scale=1):
        super(Encoder_input, self).__init__()
        self.num_res_blocks = num_res_blocks
        self.conv_head = conv3x3(img_channel, n_feats)
        
        self.RBs = nn.ModuleList()
        for i in range(self.num_res_blocks):
            self.RBs.append(ResBlock(in_channels=n_feats, out_channels=n_feats, 
                res_scale=res_scale))
            
        self.conv_tail = conv3x3(n_feats, n_feats)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        
    def forward(self, x):
        x = self.relu(self.conv_head(x))
        x1 = x
        for i in range(self.num_res_blocks):
            x = self.RBs[i](x)
        x = self.conv_tail(x)
        x = x + x1
        return x




class ResList(nn.Module):
    def __init__(self, num_res_blocks, n_feats, res_scale=1):
        super(ResList, self).__init__()
        self.num_res_blocks = num_res_blocks

        self.RBs = nn.ModuleList()
        for i in range(self.num_res_blocks):
            self.RBs.append(ResBlock(in_channels=n_feats, out_channels=n_feats))

        self.conv_tail = conv3x3(n_feats, n_feats)

    def forward(self, x):
        x1 = x
        for i in range(self.num_res_blocks):
            x = self.RBs[i](x)
        x = self.conv_tail(x)
        x = x + x1
        return x
    

class Res_Attention_List(nn.Module):
    def __init__(self, num_res_blocks, n_feats, res_scale=1):
        super(Res_Attention_List, self).__init__()
        self.num_res_blocks = num_res_blocks

        self.RBs = nn.ModuleList()
        for i in range(self.num_res_blocks):
            self.RBs.append(Res_Attention(in_channels=n_feats, out_channels=n_feats))

        self.conv_tail = conv3x3(n_feats, n_feats)

    def forward(self, x):
        x1 = x
        for i in range(self.num_res_blocks):
            x = self.RBs[i](x)
        x = self.conv_tail(x)
        x = x + x1
        return x


class PixelShufflePack(nn.Module):
    """ Pixel Shuffle upsample layer.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        scale_factor (int): Upsample ratio.
        upsample_kernel (int): Kernel size of Conv layer to expand channels.

    Returns:
        Upsampled feature map.
    """

    def __init__(self, in_channels, out_channels, scale_factor,
                 upsample_kernel):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.scale_factor = scale_factor
        self.upsample_kernel = upsample_kernel
        self.upsample_conv = nn.Conv2d(
            self.in_channels,
            self.out_channels * scale_factor * scale_factor,
            self.upsample_kernel,
            padding=(self.upsample_kernel - 1) // 2)
        self.init_weights()

    def init_weights(self):
        """Initialize weights for PixelShufflePack.
        """
        default_init_weights(self, 1)

    def forward(self, x):
        """Forward function for PixelShufflePack.

        Args:
            x (Tensor): Input tensor with shape (n, c, h, w).

        Returns:
            Tensor: Forward results.
        """
        x = self.upsample_conv(x)
        x = F.pixel_shuffle(x, self.scale_factor)
        return x

class BasicBlock(nn.Sequential):
    def __init__(
        self, conv, in_channels, out_channels, kernel_size, stride=1, bias=True,
        bn=False,In=False,act=nn.PReLU()):

        m = [conv(in_channels, out_channels, kernel_size, stride=stride, bias=bias)]
        if bn:
            m.append(nn.BatchNorm2d(out_channels))
        if In:
            m.append(nn.InstanceNorm2d(out_channels))
        if act is not None:
            m.append(act)

        super(BasicBlock, self).__init__(*m)

class MeanShift(nn.Conv2d):
    def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1)
        self.weight.data.div_(std.view(3, 1, 1, 1))
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
        self.bias.data.div_(std)

        self.weight.requires_grad = False
        self.bias.requires_grad = False

def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
    """Warp an image or feature map with optical flow.

    Args:
        x (Tensor): Tensor with size (n, c, h, w).
        flow (Tensor): Tensor with size (n, h, w, 2), normal value.
        interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
        padding_mode (str): 'zeros' or 'border' or 'reflection'.
            Default: 'zeros'.
        align_corners (bool): Before pytorch 1.3, the default value is
            align_corners=True. After pytorch 1.3, the default value is
            align_corners=False. Here, we use the True as default.

    Returns:
        Tensor: Warped image or feature map.
    """
    assert x.size()[-2:] == flow.size()[1:3]
    _, _, h, w = x.size()
    # create mesh grid
    grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
    grid = torch.stack((grid_x, grid_y), 2).float()  # W(x), H(y), 2
    grid.requires_grad = False

    vgrid = grid + flow
    # scale grid to [-1,1]
    vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
    vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
    vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
    output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)

    # TODO, what if align_corners=False
    return output

@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
    """Initialize network weights.

    Args:
        module_list (list[nn.Module] | nn.Module): Modules to be initialized.
        scale (float): Scale initialized weights, especially for residual
            blocks. Default: 1.
        bias_fill (float): The value to fill bias. Default: 0
        kwargs (dict): Other arguments for initialization function.
    """
    if not isinstance(module_list, list):
        module_list = [module_list]
    for module in module_list:
        for m in module.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, **kwargs)
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, **kwargs)
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)
            elif isinstance(m, _BatchNorm):
                init.constant_(m.weight, 1)
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)



class ChannelPool(nn.Module):
    def forward(self, x): #是一个元祖 第一个是最大值 第二个是坐标 所以要[0]
        return torch.cat((torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )


## Channel Attention (CA) Layer
class CALayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(CALayer, self).__init__()
        # global average pooling: feature --> point
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # feature channel downscale and upscale --> channel weight
        self.conv_du = nn.Sequential(
                nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
                nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_du(y)
        return x * y
    
    
class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        # self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
        self.spatial = nn.Conv2d(2, 1, 7, 1, 3)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x): 
        x_compress = self.compress(x)       #torch.Size([4, 2, 64, 64])
        x_out = F.relu(self.spatial(x_compress))
        # import pdb
        # pdb.set_trace()
        scale = self.sigmoid(x_out)# broadcasting
        return x * scale


class Res_Attention_Conf(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None, res_scale=1, SA=False, CA=False):
        super(Res_Attention_Conf, self).__init__()

        conv=default_conv


        self.res_scale = res_scale
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.channel_attention = CALayer(out_channels, reduction=16)
        self.spatial_attention = SpatialGate()
        # self.conv3 = conv3x3(out_channels, out_channels)
        self.CA = CA
        self.SA = SA

    def forward(self, x):


        x1 = x
        out = self.relu(self.conv1(x))

        if self.SA:
            out = self.spatial_attention(out)
            out = out 

        if self.CA:
            out = self.channel_attention(out)

        out = self.relu(self.conv2(out))
        # out = self.conv3(out)

        out = out * self.res_scale + x1
        return out




class Res_CA_Block(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1,  res_scale=1,  CA=False):
        super(Res_CA_Block, self).__init__()

        # conv=default_conv
        self.res_scale = res_scale
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.channel_attention = CALayer(out_channels, reduction=16)

        # self.conv3 = conv3x3(out_channels, out_channels)
        self.CA = CA


    def forward(self, x):
        x1 = x
        out = self.relu(self.conv1(x))
        if self.CA:
            out = self.channel_attention(out)

        out = self.relu(self.conv2(out))
        # out = self.conv3(out)

        out = out * self.res_scale + x1
        return out


class Res_Attention_List(nn.Module):
    def __init__(self, num_res_blocks, n_feats, res_scale=1):
        super(Res_Attention_List, self).__init__()
        self.num_res_blocks = num_res_blocks

        self.RBs = nn.ModuleList()
        for i in range(self.num_res_blocks):
            self.RBs.append(Res_CA_Block(in_channels=n_feats, out_channels=n_feats))

        self.conv_tail = conv3x3(n_feats, n_feats)

    def forward(self, x):
        x1 = x
        for i in range(self.num_res_blocks):
            x = self.RBs[i](x)
        x = self.conv_tail(x)
        x = x + x1
        return x



class Res_Attention(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None, res_scale=1, SA=False, CA=False):
        super(Res_Attention, self).__init__()
        self.res_scale = res_scale
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.channel_attention = CALayer(out_channels, reduction=16)
        self.spatial_attention = SpatialGate()
        # self.conv3 = conv3x3(out_channels, out_channels)
        self.CA = CA
        self.SA = SA

    def forward(self, x):
        x1 = x
        out = self.relu(self.conv1(x))

        if self.SA:
            out = self.spatial_attention(out)

        if self.CA:
            out = self.channel_attention(out)

        out = self.relu(self.conv2(out))
        # out = self.conv3(out)

        out = out * self.res_scale + x1
        return out







def record(fea, path):
    fea = fea[0][0]
    mean = fea.mean()
    std = fea.std()

    fea_norm = (fea- mean)/std

    # fea = (fea.cpu().numpy()*255).round().astype(np.uint8)
    fea_norm = fea_norm.detach().cpu().numpy()
    # cv2.imwrite(path, fea_norm)

    plt.imsave(path, fea_norm, cmap = 'gray')
    pass



def record2(fea, path):
    fea = fea[0][0]
    mean = fea.mean()
    std = fea.std()

    fea_norm = (fea- mean)/std

    # fea = (fea.cpu().numpy()*255).round().astype(np.uint8)
    fea_norm = fea_norm.detach().cpu().numpy()
    # cv2.imwrite(path, fea_norm)

    plt.imsave(path, fea_norm, cmap = 'gray')
    pass