File size: 16,553 Bytes
6721043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
from __future__ import division
import numpy as np
import cv2
import random
import torch
import glob
import os
from random import choices
from scipy.stats import poisson
def Rawread(path,low=0):
if path.endswith('.raw'):
return read_img(path,low)
if path.endswith('.npy'):
return read_npy(path,low)
if path.endswith('.png'):
return read_png(path,low)
def read_img(path,low):
w = 4000
h = 3000
raw = np.fromfile(path,np.uint16)
raw = raw.reshape((h,w))
raw = raw.astype(np.float32)-64
raw = rggb_raw(raw)
raw = np.clip(raw, low, 959)
return raw
def read_npy(path,low):
raw = np.load(path)
if raw.shape[0] == 4:
return raw * 959
raw = raw.astype(np.float32)-64
raw = rggb_raw(raw)
raw = np.clip(raw, low, 959)
return raw
def read_rawpng(path, metadata):
raw = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)
# if raw.shape[0] == 4:
# return raw * 959
raw = ((raw.astype(np.float32) - 256.) / (4095.- 256.)).clip(0, 1)
raw = bayer2raw(raw, metadata)
raw = np.clip(raw, 0., 1.)
return raw
def read_png(path, low):
raw = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)
if raw.shape[0] == 4:
return raw * 959
raw = raw.astype(np.float32)-256
raw = rggb_raw(raw)
raw = np.clip(raw, low, 4095)
return raw
def random_crop(frames_0,frames_1=None ,crop_size=128):
F,C, H, W = frames_0.shape
rnd_w = random.randint(0, W - crop_size)
rnd_h = random.randint(0, H - crop_size)
patch = frames_0[..., rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size]
if not frames_1 is None:
path1 = frames_1[..., rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size]
return np.concatenate([patch,path1],axis=0)
return patch
def rggb_raw(raw):
# pack RGGB Bayer raw to 4 channels
H, W = raw.shape
raw = raw[None, ...]
raw_pack = np.concatenate((raw[:, 0:H:2, 0:W:2],
raw[:, 0:H:2, 1:W:2],
raw[:, 1:H:2, 0:W:2],
raw[:, 1:H:2, 1:W:2]), axis=0)
return raw_pack
def bayer2raw(raw, metadata):
# pack RGGB Bayer raw to 4 channels
H, W = raw.shape
raw = raw[None, ...]
if metadata['cfa_pattern'][0] == 0:
# RGGB
raw_pack = np.concatenate((raw[:, 0:H:2, 0:W:2],
raw[:, 0:H:2, 1:W:2],
raw[:, 1:H:2, 0:W:2],
raw[:, 1:H:2, 1:W:2]), axis=0)
else :
# BGGR
raw_pack = np.concatenate((raw[:, 1:H:2, 1:W:2],
raw[:, 0:H:2, 1:W:2],
raw[:, 1:H:2, 0:W:2],
raw[:, 0:H:2, 0:W:2]), axis=0)
return raw_pack
def raw_rggb(raws):
# depack 4 channels raw to RGGB Bayer
C, H, W = raws.shape
output = np.zeros((H * 2, W * 2)).astype(np.uint16)
output[0:2 * H:2, 0:2 * W:2] = raws[0:1, :, :]
output[0:2 * H:2, 1:2 * W:2] = raws[1:2, :, :]
output[1:2 * H:2, 0:2 * W:2] = raws[2:3, :, :]
output[1:2 * H:2, 1:2 * W:2] = raws[3:4, :, :]
return output
def raw_rggb_float32(raws):
# depack 4 channels raw to RGGB Bayer
C, H, W = raws.shape
output = np.zeros((H * 2, W * 2)).astype(np.float32)
output[0:2 * H:2, 0:2 * W:2] = raws[0:1, :, :]
output[0:2 * H:2, 1:2 * W:2] = raws[1:2, :, :]
output[1:2 * H:2, 0:2 * W:2] = raws[2:3, :, :]
output[1:2 * H:2, 1:2 * W:2] = raws[3:4, :, :]
return output
def depack_rggb_raws(raws):
# depack 4 channels raw to RGGB Bayer
N, C, H, W = raws.shape
output = torch.zeros((N, 1, H * 2, W * 2))
output[:, :, 0:2 * H:2, 0:2 * W:2] = raws[:, 0:1, :, :]
output[:, :, 0:2 * H:2, 1:2 * W:2] = raws[:, 1:2, :, :]
output[:, :, 1:2 * H:2, 0:2 * W:2] = raws[:, 2:3, :, :]
output[:, :, 1:2 * H:2, 1:2 * W:2] = raws[:, 3:4, :, :]
return output
# IMAGETYPES = ('*.bmp', '*.png', '*.jpg', '*.jpeg', '*.tif')
IMAGETYPES = ('*.npy','*.raw',) #得加逗号 不然会拆分字符串
def get_imagenames(seq_dir, pattern=None):
""" Get ordered list of filenames
"""
files = []
for typ in IMAGETYPES:
files.extend(glob.glob(os.path.join(seq_dir, typ)))
# filter filenames
if not pattern is None:
ffiltered = []
ffiltered = [f for f in files if pattern in os.path.split(f)[-1]]
files = ffiltered
del ffiltered
# sort filenames alphabetically
files.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
return files
def get_imagenames(seq_dir, pattern=None):
""" Get ordered list of filenames
"""
files = []
for typ in IMAGETYPES:
files.extend(glob.glob(os.path.join(seq_dir, typ)))
# filter filenames
if not pattern is None:
ffiltered = []
ffiltered = [f for f in files if pattern in os.path.split(f)[-1]]
files = ffiltered
del ffiltered
# sort filenames alphabetically
files.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
return files
def open_sequence(seq_dir, gray_mode, expand_if_needed=False, max_num_fr=100):
r""" Opens a sequence of images and expands it to even sizes if necesary
Args:
fpath: string, path to image sequence
gray_mode: boolean, True indicating if images is to be open are in grayscale mode
expand_if_needed: if True, the spatial dimensions will be expanded if
size is odd
expand_axis0: if True, output will have a fourth dimension
max_num_fr: maximum number of frames to load
Returns:
seq: array of dims [num_frames, C, H, W], C=1 grayscale or C=3 RGB, H and W are even.
The image gets normalized gets normalized to the range [0, 1].
expanded_h: True if original dim H was odd and image got expanded in this dimension.
expanded_w: True if original dim W was odd and image got expanded in this dimension.
"""
# Get ordered list of filenames
files = get_imagenames(seq_dir)
seq_list_raw = []
seq_list_raw_noise = []
print("\tOpen sequence in folder: ", seq_dir)
for fpath in files[0:max_num_fr]:
raw, raw_noise, expanded_h, expanded_w = open_image(fpath,\
gray_mode=gray_mode,\
expand_if_needed=expand_if_needed,\
expand_axis0=False)
raw = rggb_raw(raw)
raw_noise = rggb_raw(raw_noise)
seq_list_raw.append(raw)
seq_list_raw_noise.append(raw_noise)
seq_raw = np.stack(seq_list_raw, axis=0)
seq_raw_noise = np.stack(seq_list_raw_noise, axis=0)
return seq_raw, seq_raw_noise, expanded_h, expanded_w
def open_image(fpath, gray_mode, expand_if_needed=False, expand_axis0=True, normalize_data=True):
r""" Opens an image and expands it if necesary
Args:
fpath: string, path of image file
gray_mode: boolean, True indicating if image is to be open
in grayscale mode
expand_if_needed: if True, the spatial dimensions will be expanded if
size is odd
expand_axis0: if True, output will have a fourth dimension
Returns:
img: image of dims NxCxHxW, N=1, C=1 grayscale or C=3 RGB, H and W are even.
if expand_axis0=False, the output will have a shape CxHxW.
The image gets normalized to the range [0, 1].
expanded_h: True if original dim H was odd and image got expanded in this dimension.
expanded_w: True if original dim W was odd and image got expanded in this dimension.
"""
# if not gray_mode:
# # Open image as a CxHxW torch.Tensor
# img = cv2.imread(fpath)
# # from HxWxC to CxHxW, RGB image
# img = (cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).transpose(2, 0, 1)
# else:
# # from HxWxC to CxHxW grayscale image (C=1)
# img = cv2.imread(fpath, cv2.IMREAD_GRAYSCALE)
# 测试真实的图片
# raw_img = ((np.fromfile(fpath,np.uint16).astype(np.float32))*4833)/2048
# raw_img = np.clip(raw_img-64, 0, 1023-64)
# raw_img = raw_img.reshape((3000,4000))
# raw_img = np.load(fpath).astype(np.float32)-64
w = 4000
h = 3000
raw_img = np.fromfile(fpath,dtype=np.uint16,count=w*h)
raw_img = raw_img.reshape((h,w)).astype(np.float32)-64
raw_img = np.clip(raw_img, 0, 959)
noise_fpath =fpath.replace('onlyraw_test_clean_raw','onlyraw_test_noise_raw')
raw_img_noise = np.fromfile(noise_fpath,dtype=np.uint16,count=w*h)
raw_img_noise = raw_img_noise.reshape((h,w)).astype(np.float32)-64
raw_img_noise = np.clip(raw_img_noise, 0, 959)
#blc
# if expand_axis0:
# img = np.expand_dims(img, 0)
# Handle odd sizes
expanded_h = False
expanded_w = False
sh_im = raw_img.shape
# if expand_if_needed:
# if sh_im[-2]%2 == 1:
# expanded_h = True
# if expand_axis0:
# img = np.concatenate((img, \
# img[:, :, -1, :][:, :, np.newaxis, :]), axis=2)
# else:
# img = np.concatenate((img, \
# img[:, -1, :][:, np.newaxis, :]), axis=1)
# if sh_im[-1]%2 == 1:
# expanded_w = True
# if expand_axis0:
# img = np.concatenate((img, \
# img[:, :, :, -1][:, :, :, np.newaxis]), axis=3)
# else:
# img = np.concatenate((img, \
# img[:, :, -1][:, :, np.newaxis]), axis=2)
if normalize_data:
raw_img = normalize(raw_img)
raw_img_noise = normalize(raw_img_noise)
return raw_img, raw_img_noise, expanded_h, expanded_w
def normalize(data):
r"""Normalizes a unit8 image to a float32 image in the range [0, 1]
Args:
data: a unint8 numpy array to normalize from [0, 255] to [0, 1]
"""
return np.float32(data/(959))
def augment_cuda(batches, args, spynet=None):
def _augment(img, hflip=True, rot=True):
hflip = hflip and random.random() < 0.5
vflip = rot and random.random() < 0.5
# rot90 = rot and random.random() < 0.5
k1 = np.random.randint(0, 4) #0,1,2,3
if hflip: img = img.flip(-1)
if vflip: img = img.flip(-2)
img = torch.rot90(img, k=k1, dims=[-2, -1])
return img
batches_aug = _augment(batches)
if args.pair:
noise = batches_aug[:,:args.frame,...]/959
clean = batches_aug[:,args.frame,...]/959 #if args.scene != 'noisedata' else batches_aug[:,args.frame,...]
else:
clean, noise = Noise_simulation(batches_aug,args)
if not args.consistent_loss:
clean = clean[:, args.frame // 2, ...]
B, F, C , H, W = noise.shape
noise = noise.reshape(B, F*C , H, W )
return clean, noise, None
def Noise_simulation(batches_aug,args):
batches_aug = batches_aug/959
batches_aug = torch.clamp(batches_aug , 0, 1)
B = batches_aug.shape[0]
batch_aug_mean = batches_aug.mean(dim=(1,2,3,4))
if args.need_Scaling:
if args.sample_gain == 'type1':
# rand_avg = torch.randint(args.luminance_low, args.luminance_high ,(B, )).cuda(args.local_rank)
rand_avg = (torch.rand((B)) * 0.12 + 0.001).cuda(args.local_rank)
if args.sample_gain == 'type2':
rand_avg = Gain_Sampler(B).cuda(args.local_rank)
coef = (batch_aug_mean / rand_avg).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
batch_aug_dark = torch.clamp(batches_aug / coef, 0, 1)
else:
batch_aug_dark = batches_aug
a,b, again, dgain = random_noise_levels_nightimaging(B, args)
batch_aug_dark,batch_aug_dark_noise = add_noise(args, batch_aug_dark,a.cuda(args.local_rank),b.cuda(args.local_rank),dgain.cuda(args.local_rank))
batch_aug_dark_noise = torch.clamp(batch_aug_dark_noise, -0.1, 1)
# print(batch_aug_dark_noise.mean())
return batch_aug_dark.float(), batch_aug_dark_noise.float()
def random_noise_levels_nightimaging(B, args):
# print('use new')
g = torch.FloatTensor(B).uniform_(0, 125).int().long()
noise_profile = torch.from_numpy(np.load('/data1/chengqihua/02_code/03_night_photogrphy/nightimage_v1/dataloader/json_all_2nd.npy'))
a = noise_profile[g,0]
b = noise_profile[g,1]
return a, b, 1, 1*torch.ones(1)
def random_noise_levels(B, args):
ak1=0.05244803
ak2=0.01498041
bk1=0.00648923
bk2= 0.05899386
bk3 = 0.21520193
g = torch.FloatTensor(B).uniform_(args.min_gain, args.max_gain)
maskA = g > 16
again = g.clone()
again[maskA] = 16
maskB = g < 16
dgain = g.clone() / 16
dgain[maskB] = 1
a = ak1 * again + ak2
b = bk1 * again*again + bk2* again + bk3
return a, b, again, dgain
def add_noise(args, image, a, b, dgain):
dgain = dgain.unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1)
a = a.unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1)
b = b.unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1)
B, F, C, H, W = image.size()
image = image / dgain
poisson_noisy_img = torch.poisson(image/a)*a
gaussian_noise = torch.sqrt(b)*torch.randn(B, F, C, H, W).cuda(args.local_rank)
noiseimg = poisson_noisy_img + gaussian_noise
if args.usedgain :
noiseimg = noiseimg * dgain
image = image * dgain
return image, noiseimg
def normalize_augment(datain):
'''Normalizes and augments an input patch of dim [N, num_frames, C. H, W] in [0., 255.] to \
[N, num_frames*C. H, W] in [0., 1.]. It also returns the central (edited by cjm : now all frames) frame of the temporal \
patch as a ground truth.
'''
def transform(sample):
# define transformations
do_nothing = lambda x: x
do_nothing.__name__ = 'do_nothing'
flipud = lambda x: torch.flip(x, dims=[2])
flipud.__name__ = 'flipup'
rot90 = lambda x: torch.rot90(x, k=1, dims=[2, 3])
rot90.__name__ = 'rot90'
rot90_flipud = lambda x: torch.flip(torch.rot90(x, k=1, dims=[2, 3]), dims=[2])
rot90_flipud.__name__ = 'rot90_flipud'
rot180 = lambda x: torch.rot90(x, k=2, dims=[2, 3])
rot180.__name__ = 'rot180'
rot180_flipud = lambda x: torch.flip(torch.rot90(x, k=2, dims=[2, 3]), dims=[2])
rot180_flipud.__name__ = 'rot180_flipud'
rot270 = lambda x: torch.rot90(x, k=3, dims=[2, 3])
rot270.__name__ = 'rot270'
rot270_flipud = lambda x: torch.flip(torch.rot90(x, k=3, dims=[2, 3]), dims=[2])
rot270_flipud.__name__ = 'rot270_flipud'
add_csnt = lambda x: x + torch.normal(mean=torch.zeros(x.size()[0], 1, 1, 1), \
std=(5/255.)).expand_as(x).to(x.device)
add_csnt.__name__ = 'add_csnt'
# define transformations and their frequency, then pick one.
aug_list = [do_nothing, flipud, rot90, rot90_flipud, \
rot180, rot180_flipud, rot270, rot270_flipud, add_csnt]
w_aug = [32, 12, 12, 12, 12, 12, 12, 12, 12] # one fourth chances to do_nothing
transf = choices(aug_list, w_aug)
# transform all images in array
return transf[0](sample)
img_train = datain #torch.Size([8, 11, 3, 96, 96])
# convert to [N, num_frames*C. H, W] in [0., 1.] from [N, num_frames, C. H, W] in [0., 255.]
N, F, C, H, W = img_train.shape
img_train = img_train.view(img_train.size()[0], -1, \
img_train.size()[-2], img_train.size()[-1]) / 255. # torch.Size([8, 33, 96, 96])
#augment
img_train = transform(img_train)
img_train = img_train.view(N, F, C, H, W)
# extract ground truth (central frame)
# gt_train = img_train[:, 3*ctrl_fr_idx:3*ctrl_fr_idx+3, :, :]
return img_train, img_train
def Gain_Sampler(B):
gain_dict = {
'low':[5,35],
'mid':[35,60],
'high':[60,100]
}
level = ['low','mid','high']
sampled = np.random.choice(level,B,[0.7,0.2,0.1])
all = []
for index in sampled:
all.append(torch.randint(gain_dict[index][0],gain_dict[index][1],(1,)))
return torch.Tensor(all)
def path_replace(path,args):
for i in range(len(args.replace_left)):
path = path.replace(args.replace_left[i],args.replace_right[i])
return path |