File size: 9,149 Bytes
6721043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import numpy as np
import cv2
# from PIL import Image
import os
import glob
from tqdm import tqdm
from pathlib import Path
import torch
import torch.nn.functional as F
# Parameters of the motion estimation algorithms
def warp_flow(img, flow):
'''
Applies to img the transformation described by flow.
'''
#assert len(flow.shape) == 3 and flow.shape[-1] == 2
hf, wf = flow.shape[:2]
# flow = -flow
flow[:, :, 0] += np.arange(wf)
flow[:, :, 1] += np.arange(hf)[:, np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
def estimate_invflow(img0, img1, me_algo):
'''
Estimates inverse optical flow by using the me_algo algorithm.
'''
# Create estimator object
if me_algo == "DeepFlow":
of_estim = cv2.optflow.createOptFlow_DeepFlow()
else:
raise Exception("Incorrect motion estimation algorithm")
# Run flow estimation (inverse flow)
flow = of_estim.calc(img1, img0, None)
# flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
def align_frames(img_to_align, img_source, mc_alg='DeepFlow'):
'''
Applies to img_to_align a transformation which converts it into img_source.
Args:
img_to_align: HxWxC image
img_source: HxWxC image
mc_alg: selects between DeepFlow, SimpleFlow, and TVL1. DeepFlow runs by default.
Returns:
HxWxC aligned image
'''
if img_to_align.ndim == 2:
img0 = img_to_align
img1 = img_source
else:
img0 = img_to_align[:, :, 1]
img1 = img_source[:, :, 1]
out_img = None
# Align frames according to selection in mc_alg
flow = estimate_invflow(img0, img1, mc_alg)
#print(flow.astype(np.float32))
# rectifier
out_img = warp_flow(img_to_align, flow.astype(np.float32))
return out_img, flow
def SIFT(img1gray, img2gray):
# if i == 0:
sift = cv2.xfeatures2d.SIFT_create() # 创建sift方法
# sift = cv2.SURF_create() # 创建sift方法
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None) # 用sift找到图像中的关键点和描述子
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1 # FLANN使用的算法选择,有0,1等,具体多少算法不太清楚。
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=10)
flann = cv2.FlannBasedMatcher(index_params, search_params) # 这里创建FLANN匹配算法
matches = flann.knnMatch(des1, des2, k=2) # 这里是使用创建的FLANN算法对两张图上的描述子进行匹配,使用k近邻匹配,k=2即最近邻匹配
# 上述返回的matches是一种数据类型,这样一个类型中包含了matches.queryIdx .trainIdx 和 .distance,由于是knn,k=2,返回两个最相似的特征点。
# 而上面返回的特征点kp1和kp2也是一种类,包含了kp1.pt:关键点坐标 kp1.angle:关键点方向 kp1.response:关键点强度 kp1.size该点直径大小
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))] # 为了去画匹配的情况,创建了一个掩膜
good = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.65*n.distance:
good.append(m)
matchesMask[i] = [1, 0]
MIN_MATCH_COUNT = 9
print(len(good))
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 3)
else:
print('error!!!!!!!!!!!!!!!!!!!!!!!!!!!')
return
# print(M)
return M
def match_colors(im_ref, im_q, im_test):
im_ref_mean_re = im_ref.view(*im_ref.shape[:2], -1)
im_q_mean_re = im_q.view(*im_q.shape[:2], -1)
# Estimate color transformation matrix by minimizing the least squares error
c_mat_all = []
for ir, iq in zip(im_ref_mean_re, im_q_mean_re):
c = torch.linalg.lstsq(iq.t(), ir.t())
c = c.solution[:im_ref_mean_re.size(1)]
c_mat_all.append(c)
c_mat = torch.stack(c_mat_all, dim=0)
# Apply the transformation to test image
im_test_re = im_test.view(*im_test.shape[:2], -1)
im_t_conv = torch.matmul(im_test_re.permute(0, 2, 1), c_mat).permute(0, 2, 1)
im_t_conv = im_t_conv.view(im_test.shape)
return im_t_conv
def color_correction(gt, in_put, output, scale_factor=2):
# ds_gt = F.interpolate(gt, scale_factor=1.0 / scale_factor, mode='bilinear', align_corners=False, recompute_scale_factor=True)
output_cor = match_channel_colors(gt, in_put, output)
return output_cor
def match_channel_colors(im_ref, im_q, im_test):
im_ref_reshape = im_ref.view(*im_ref.shape[:2], -1)
im_q_reshape = im_q.view(*im_q.shape[:2], -1)
im_test_reshape = im_test.view(*im_test.shape[:2], -1)
# Estimate color transformation matrix by minimizing the least squares error
im_t_conv_list = []
for i in range(im_ref.size(1)):
c_mat_all = []
for ir_batch, iq_batch in zip(im_ref_reshape[:, i:i+1, :], im_q_reshape[:, i:i+1, :]):
c = torch.linalg.lstsq(iq_batch.t(), ir_batch.t())
c = c.solution[:1]
c_mat_all.append(c)
c_mat = torch.stack(c_mat_all, dim=0)
# Apply the transformation to test image
im_t_conv = torch.matmul(im_test_reshape[:, i:i+1, :].permute(0, 2, 1), c_mat).permute(0, 2, 1)
im_t_conv = im_t_conv.view(*im_t_conv.shape[:2], *im_test.shape[-2:])
im_t_conv_list.append(im_t_conv)
im_t_conv = torch.cat(im_t_conv_list, dim=1)
return im_t_conv
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result |