|
|
|
|
|
import argparse |
|
import os |
|
import random |
|
import shutil |
|
import time |
|
from distutils.util import strtobool |
|
|
|
import gym |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, `torch.backends.cudnn.deterministic=False`") |
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, cuda will be enabled by default") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
|
|
|
|
parser.add_argument("--problem", type=str, default="cvrp", |
|
help="the OR problem we are trying to solve, it will be passed to the agent") |
|
parser.add_argument("--env-id", type=str, default="cvrp-v0", |
|
help="the id of the environment") |
|
parser.add_argument("--env-entry-point", type=str, default="envs.cvrp_vector_env:CVRPVectorEnv", |
|
help="the path to the definition of the environment, for example `envs.cvrp_vector_env:CVRPVectorEnv` if the `CVRPVectorEnv` class is defined in ./envs/cvrp_vector_env.py") |
|
parser.add_argument("--total-timesteps", type=int, default=6_000_000_000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--learning-rate", type=float, default=1e-3, |
|
help="the learning rate of the optimizer") |
|
parser.add_argument("--weight-decay", type=float, default=0, |
|
help="the weight decay of the optimizer") |
|
parser.add_argument("--num-envs", type=int, default=1024, |
|
help="the number of parallel game environments") |
|
parser.add_argument("--num-steps", type=int, default=100, |
|
help="the number of steps to run in each environment per policy rollout") |
|
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggle learning rate annealing for policy and value networks") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--gae-lambda", type=float, default=0.95, |
|
help="the lambda for the general advantage estimation") |
|
parser.add_argument("--num-minibatches", type=int, default=8, |
|
help="the number of mini-batches") |
|
parser.add_argument("--update-epochs", type=int, default=2, |
|
help="the K epochs to update the policy") |
|
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggles advantages normalization") |
|
parser.add_argument("--clip-coef", type=float, default=0.2, |
|
help="the surrogate clipping coefficient") |
|
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.") |
|
parser.add_argument("--ent-coef", type=float, default=0.01, |
|
help="coefficient of the entropy") |
|
parser.add_argument("--vf-coef", type=float, default=0.5, |
|
help="coefficient of the value function") |
|
parser.add_argument("--max-grad-norm", type=float, default=0.5, |
|
help="the maximum norm for the gradient clipping") |
|
parser.add_argument("--target-kl", type=float, default=None, |
|
help="the target KL divergence threshold") |
|
parser.add_argument("--n-traj", type=int, default=50, |
|
help="number of trajectories in a vectorized sub-environment") |
|
parser.add_argument("--n-test", type=int, default=1000, |
|
help="how many test instance") |
|
parser.add_argument("--multi-greedy-inference", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="whether to use multiple trajectory greedy inference") |
|
args = parser.parse_args() |
|
args.batch_size = int(args.num_envs * args.num_steps) |
|
args.minibatch_size = int(args.batch_size // args.num_minibatches) |
|
|
|
return args |
|
|
|
|
|
from wrappers.recordWrapper import RecordEpisodeStatistics |
|
|
|
|
|
def make_env(env_id, seed, cfg={}): |
|
def thunk(): |
|
env = gym.make(env_id, **cfg) |
|
env = RecordEpisodeStatistics(env) |
|
env.seed(seed) |
|
env.action_space.seed(seed) |
|
env.observation_space.seed(seed) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
from models.attention_model_wrapper import Agent |
|
from wrappers.syncVectorEnvPomo import SyncVectorEnv |
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" |
|
if args.track: |
|
import wandb |
|
|
|
wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
sync_tensorboard=True, |
|
config=vars(args), |
|
name=run_name, |
|
monitor_gym=True, |
|
save_code=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" |
|
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
os.makedirs(os.path.join(f"runs/{run_name}", "ckpt"), exist_ok=True) |
|
shutil.copy(__file__, os.path.join(f"runs/{run_name}", "main.py")) |
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = args.torch_deterministic |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") |
|
|
|
|
|
|
|
|
|
|
|
gym.envs.register( |
|
id=args.env_id, |
|
entry_point=args.env_entry_point, |
|
) |
|
|
|
|
|
envs = SyncVectorEnv([make_env(args.env_id, args.seed + i) for i in range(args.num_envs)]) |
|
|
|
|
|
test_envs = SyncVectorEnv( |
|
[ |
|
make_env( |
|
args.env_id, |
|
args.seed + i, |
|
cfg={"eval_data": True, "eval_partition": "eval", "eval_data_idx": i}, |
|
) |
|
for i in range(args.n_test) |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
assert isinstance( |
|
envs.single_action_space, gym.spaces.MultiDiscrete |
|
), "only discrete action space is supported" |
|
|
|
|
|
|
|
|
|
|
|
agent = Agent(device=device, name=args.problem).to(device) |
|
|
|
optimizer = optim.Adam( |
|
agent.parameters(), lr=args.learning_rate, eps=1e-5, weight_decay=args.weight_decay |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
obs = [None] * args.num_steps |
|
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to( |
|
device |
|
) |
|
logprobs = torch.zeros((args.num_steps, args.num_envs, args.n_traj)).to(device) |
|
rewards = torch.zeros((args.num_steps, args.num_envs, args.n_traj)).to(device) |
|
dones = torch.zeros((args.num_steps, args.num_envs, args.n_traj)).to(device) |
|
values = torch.zeros((args.num_steps, args.num_envs, args.n_traj)).to(device) |
|
|
|
|
|
global_step = 0 |
|
start_time = time.time() |
|
next_obs = envs.reset() |
|
next_done = torch.zeros(args.num_envs, args.n_traj).to(device) |
|
num_updates = args.total_timesteps // args.batch_size |
|
for update in range(1, num_updates + 1): |
|
agent.train() |
|
|
|
if args.anneal_lr: |
|
frac = 1.0 - (update - 1.0) / num_updates |
|
lrnow = frac * args.learning_rate |
|
optimizer.param_groups[0]["lr"] = lrnow |
|
next_obs = envs.reset() |
|
encoder_state = agent.backbone.encode(next_obs) |
|
next_done = torch.zeros(args.num_envs, args.n_traj).to(device) |
|
r = [] |
|
for step in range(0, args.num_steps): |
|
global_step += 1 * args.num_envs |
|
obs[step] = next_obs |
|
dones[step] = next_done |
|
|
|
|
|
with torch.no_grad(): |
|
action, logprob, _, value, _ = agent.get_action_and_value_cached( |
|
next_obs, state=encoder_state |
|
) |
|
action = action.view(args.num_envs, args.n_traj) |
|
values[step] = value.view(args.num_envs, args.n_traj) |
|
actions[step] = action |
|
logprobs[step] = logprob.view(args.num_envs, args.n_traj) |
|
|
|
next_obs, reward, done, info = envs.step(action.cpu().numpy()) |
|
rewards[step] = torch.tensor(reward).to(device) |
|
next_obs, next_done = next_obs, torch.Tensor(done).to(device) |
|
|
|
for item in info: |
|
if "episode" in item.keys(): |
|
r.append(item) |
|
print("completed_episodes=", len(r)) |
|
avg_episodic_return = np.mean([rollout["episode"]["r"].mean() for rollout in r]) |
|
max_episodic_return = np.mean([rollout["episode"]["r"].max() for rollout in r]) |
|
avg_episodic_length = np.mean([rollout["episode"]["l"].mean() for rollout in r]) |
|
print( |
|
f"[Train] global_step={global_step}\n \ |
|
avg_episodic_return={avg_episodic_return}\n \ |
|
max_episodic_return={max_episodic_return}\n \ |
|
avg_episodic_length={avg_episodic_length}" |
|
) |
|
writer.add_scalar("charts/episodic_return_mean", avg_episodic_return, global_step) |
|
writer.add_scalar("charts/episodic_return_max", max_episodic_return, global_step) |
|
writer.add_scalar("charts/episodic_length", avg_episodic_length, global_step) |
|
|
|
with torch.no_grad(): |
|
next_value = agent.get_value_cached(next_obs, encoder_state).squeeze(-1) |
|
advantages = torch.zeros_like(rewards).to(device) |
|
lastgaelam = torch.zeros(args.num_envs, args.n_traj).to(device) |
|
for t in reversed(range(args.num_steps)): |
|
if t == args.num_steps - 1: |
|
nextnonterminal = 1.0 - next_done |
|
nextvalues = next_value |
|
else: |
|
nextnonterminal = 1.0 - dones[t + 1] |
|
nextvalues = values[t + 1] |
|
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] |
|
advantages[t] = lastgaelam = ( |
|
delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam |
|
) |
|
returns = advantages + values |
|
|
|
|
|
b_obs = { |
|
k: np.concatenate([obs_[k] for obs_ in obs]) for k in envs.single_observation_space |
|
} |
|
|
|
|
|
b_logprobs = logprobs.reshape(-1, args.n_traj) |
|
b_actions = actions.reshape((-1,) + envs.single_action_space.shape) |
|
b_advantages = advantages.reshape(-1, args.n_traj) |
|
b_returns = returns.reshape(-1, args.n_traj) |
|
b_values = values.reshape(-1, args.n_traj) |
|
|
|
|
|
assert args.num_envs % args.num_minibatches == 0 |
|
envsperbatch = args.num_envs // args.num_minibatches |
|
envinds = np.arange(args.num_envs) |
|
flatinds = np.arange(args.batch_size).reshape(args.num_steps, args.num_envs) |
|
|
|
clipfracs = [] |
|
for epoch in range(args.update_epochs): |
|
np.random.shuffle(envinds) |
|
for start in range(0, args.num_envs, envsperbatch): |
|
end = start + envsperbatch |
|
mbenvinds = envinds[start:end] |
|
mb_inds = flatinds[:, mbenvinds].ravel() |
|
r_inds = np.tile(np.arange(envsperbatch), args.num_steps) |
|
|
|
cur_obs = {k: v[mbenvinds] for k, v in obs[0].items()} |
|
encoder_state = agent.backbone.encode(cur_obs) |
|
_, newlogprob, entropy, newvalue, _ = agent.get_action_and_value_cached( |
|
{k: v[mb_inds] for k, v in b_obs.items()}, |
|
b_actions.long()[mb_inds], |
|
(embedding[r_inds, :] for embedding in encoder_state), |
|
) |
|
|
|
logratio = newlogprob - b_logprobs[mb_inds] |
|
ratio = logratio.exp() |
|
|
|
with torch.no_grad(): |
|
|
|
old_approx_kl = (-logratio).mean() |
|
approx_kl = ((ratio - 1) - logratio).mean() |
|
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] |
|
|
|
mb_advantages = b_advantages[mb_inds] |
|
if args.norm_adv: |
|
mb_advantages = (mb_advantages - mb_advantages.mean()) / ( |
|
mb_advantages.std() + 1e-8 |
|
) |
|
|
|
|
|
pg_loss1 = -mb_advantages * ratio |
|
pg_loss2 = -mb_advantages * torch.clamp( |
|
ratio, 1 - args.clip_coef, 1 + args.clip_coef |
|
) |
|
pg_loss = torch.max(pg_loss1, pg_loss2).mean() |
|
|
|
newvalue = newvalue.view(-1, args.n_traj) |
|
if args.clip_vloss: |
|
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 |
|
v_clipped = b_values[mb_inds] + torch.clamp( |
|
newvalue - b_values[mb_inds], |
|
-args.clip_coef, |
|
args.clip_coef, |
|
) |
|
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 |
|
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) |
|
v_loss = 0.5 * v_loss_max.mean() |
|
else: |
|
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() |
|
|
|
entropy_loss = entropy.mean() |
|
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) |
|
optimizer.step() |
|
|
|
if args.target_kl is not None: |
|
if approx_kl > args.target_kl: |
|
break |
|
|
|
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() |
|
var_y = np.var(y_true) |
|
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y |
|
|
|
|
|
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) |
|
writer.add_scalar("losses/value_loss", v_loss.item(), global_step) |
|
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) |
|
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) |
|
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) |
|
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) |
|
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) |
|
writer.add_scalar("losses/explained_variance", explained_var, global_step) |
|
print("SPS:", int(global_step / (time.time() - start_time))) |
|
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) |
|
if update % 1000 == 0 or update == num_updates: |
|
torch.save(agent.state_dict(), f"runs/{run_name}/ckpt/{update}.pt") |
|
if update % 100 == 0 or update == num_updates: |
|
agent.eval() |
|
test_obs = test_envs.reset() |
|
r = [] |
|
for step in range(0, args.num_steps): |
|
|
|
with torch.no_grad(): |
|
action, logits = agent(test_obs) |
|
if step == 0: |
|
if args.multi_greedy_inference: |
|
if args.problem == 'tsp': |
|
action = torch.arange(args.n_traj).repeat(args.n_test, 1) |
|
elif args.problem == 'cvrp': |
|
action = torch.arange(1, args.n_traj + 1).repeat(args.n_test, 1) |
|
|
|
test_obs, _, _, test_info = test_envs.step(action.cpu().numpy()) |
|
|
|
for item in test_info: |
|
if "episode" in item.keys(): |
|
r.append(item) |
|
|
|
avg_episodic_return = np.mean([rollout["episode"]["r"].mean() for rollout in r]) |
|
max_episodic_return = np.mean([rollout["episode"]["r"].max() for rollout in r]) |
|
avg_episodic_length = np.mean([rollout["episode"]["l"].mean() for rollout in r]) |
|
print(f"[test] episodic_return={max_episodic_return}") |
|
writer.add_scalar("test/episodic_return_mean", avg_episodic_return, global_step) |
|
writer.add_scalar("test/episodic_return_max", max_episodic_return, global_step) |
|
writer.add_scalar("test/episodic_length", avg_episodic_length, global_step) |
|
|
|
envs.close() |
|
writer.close() |
|
|