RLOR-TSP / models /nets /attention_model /multi_head_attention.py
Patrick WAN
initial commit
52933b5
import math
import torch
from torch import nn
class AttentionScore(nn.Module):
r"""
A helper class for attention operations.
There are no parameters in this module.
This module computes the alignment score with mask
and return only the attention score.
The default operation is
.. math::
\pmb{u} = \mathrm{Attention}(q,\pmb{k}, \mathrm{mask})
where for each key :math:`k_j`, we have
.. math::
u_j =
\begin{cases}
&\frac{q^Tk_j}{\sqrt{\smash{d_q}}} & \text{ if } j \notin \mathrm{mask}\\
&-\infty & \text{ otherwise. }
\end{cases}
If ``use_tanh`` is ``True``, apply clipping on the logits :math:`u_j` before masking:
.. math::
u_j =
\begin{cases}
&C\mathrm{tanh}\left(\frac{q^Tk_j}{\sqrt{\smash{d_q}}}\right) & \text{ if } j \notin \mathrm{mask}\\
&-\infty & \text{ otherwise. }
\end{cases}
Args:
use_tanh: if True, use clipping on the logits
C: the range of the clipping [-C,C]
Inputs: query, keys, mask
* **query** : [..., 1, h_dim]
* **keys**: [..., graph_size, h_dim]
* **mask**: [..., graph_size] ``logits[...,j]==-inf`` if ``mask[...,j]==True``.
Outputs: logits
* **logits**: [..., 1, graph_size] The attention score for each key.
"""
def __init__(self, use_tanh=False, C=10):
super(AttentionScore, self).__init__()
self.use_tanh = use_tanh
self.C = C
def forward(self, query, key, mask=torch.zeros([], dtype=torch.bool)):
u = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query.size(-1))
if self.use_tanh:
logits = torch.tanh(u) * self.C
else:
logits = u
logits[mask.expand_as(logits)] = float("-inf") # masked after clipping
return logits
class MultiHeadAttention(nn.Module):
r"""
Compute the multi-head attention.
.. math::
q^\prime = \mathrm{MultiHeadAttention}(q,\pmb{k},\pmb{v},\mathrm{mask})
The following is computed:
.. math::
\begin{aligned}
\pmb{a}^{(j)} &= \mathrm{Softmax}(\mathrm{AttentionScore}(q^{(j)},\pmb{k}^{(j)}, \mathrm{mask}))\\
h^{(j)} &= \sum\nolimits_i \pmb{a}^{(j)}_i\pmb{v}_i \\
q^\prime &= W^O \left[h^{(1)},...,h^{(J)}\right]
\end{aligned}
Args:
embedding_dim: dimension of the query, keys, values
n_head: number of heads
Inputs: query, keys, value, mask
* **query** : [batch, n_querys, embedding_dim]
* **keys**: [batch, n_keys, embedding_dim]
* **value**: [batch, n_keys, embedding_dim]
* **mask**: [batch, 1, n_keys] ``logits[batch,j]==-inf`` if ``mask[batch, 0, j]==True``
Outputs: logits, out
* **out**: [batch, 1, embedding_dim] The output of the multi-head attention
"""
def __init__(self, embedding_dim, n_heads=8):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.attentionScore = AttentionScore()
self.project_out = nn.Linear(embedding_dim, embedding_dim, bias=False)
def forward(self, query, key, value, mask):
query_heads = self._make_heads(query)
key_heads = self._make_heads(key)
value_heads = self._make_heads(value)
# [n_heads, batch, 1, nkeys]
compatibility = self.attentionScore(query_heads, key_heads, mask)
# [n_heads, batch, 1, head_dim]
out_heads = torch.matmul(torch.softmax(compatibility, dim=-1), value_heads)
# from multihead [nhead, batch, 1, head_dim] -> [batch, 1, nhead* head_dim]
out = self.project_out(self._unmake_heads(out_heads))
return out
def _make_heads(self, v):
batch_size, nkeys, h_dim = v.shape
# [batch_size, ..., n_heads* head_dim] --> [n_heads, batch_size, ..., head_dim]
out = v.reshape(batch_size, nkeys, self.n_heads, h_dim // self.n_heads).movedim(-2, 0)
return out
def _unmake_heads(self, v):
# [n_heads, batch_size, ..., head_dim] --> [batch_size, ..., n_heads* head_dim]
out = v.movedim(0, -2).flatten(-2)
return out
class MultiHeadAttentionProj(nn.Module):
r"""
Compute the multi-head attention with projection.
Different from :class:`.MultiHeadAttention` which accepts precomputed query, keys, and values,
this module computes linear projections from the inputs to query, keys, and values.
.. math::
q^\prime = \mathrm{MultiHeadAttentionProj}(q_0,\pmb{h},\mathrm{mask})
The following is computed:
.. math::
\begin{aligned}
q, \pmb{k}, \pmb{v} &= W^Qq_0, W^K\pmb{h}, W^V\pmb{h}\\
\pmb{a}^{(j)} &= \mathrm{Softmax}(\mathrm{AttentionScore}(q^{(j)},\pmb{k}^{(j)}, \mathrm{mask}))\\
h^{(j)} &= \sum\nolimits_i \pmb{a}^{(j)}_i\pmb{v}_i \\
q^\prime &= W^O \left[h^{(1)},...,h^{(J)}\right]
\end{aligned}
if :math:`\pmb{h}` is not given. This module will compute the self attention of :math:`q_0`.
.. warning::
The results of the in-projection of query, key, value are
slightly different (order of ``1e-6``) with the original implementation.
This is due to the numerical accuracy.
The two implementations differ by the way of multiplying matrix.
Thus, different internal implementation libraries of pytorch are called
and the results are slightly different.
See the pytorch docs on `numerical accruacy <https://pytorch.org/docs/stable/notes/numerical_accuracy.html>`_ for detail.
Args:
embedding_dim: dimension of the query, keys, values
n_head: number of heads
Inputs: q, h, mask
* **q** : [batch, n_querys, embedding_dim]
* **h**: [batch, n_keys, embedding_dim]
* **mask**: [batch, n_keys] ``logits[batch,j]==-inf`` if ``mask[batch,j]==True``
Outputs: out
* **out**: [batch, n_querys, embedding_dim] The output of the multi-head attention
"""
def __init__(self, embedding_dim, n_heads=8):
super(MultiHeadAttentionProj, self).__init__()
self.queryEncoder = nn.Linear(embedding_dim, embedding_dim, bias=False)
self.keyEncoder = nn.Linear(embedding_dim, embedding_dim, bias=False)
self.valueEncoder = nn.Linear(embedding_dim, embedding_dim, bias=False)
self.MHA = MultiHeadAttention(embedding_dim, n_heads)
def forward(self, q, h=None, mask=torch.zeros([], dtype=torch.bool)):
if h is None:
h = q # compute self-attention
query = self.queryEncoder(q)
key = self.keyEncoder(h)
value = self.valueEncoder(h)
out = self.MHA(query, key, value, mask)
return out