File size: 34,012 Bytes
52933b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
{
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "!git clone https://github.com/cpwan/RLOR\n",
        "%cd RLOR"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5a69iB04JzY2",
        "outputId": "13a3a63e-34bf-4d8b-a853-9d2597cd03d5"
      },
      "id": "5a69iB04JzY2",
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Cloning into 'RLOR'...\n",
            "remote: Enumerating objects: 52, done.\u001b[K\n",
            "remote: Counting objects: 100% (52/52), done.\u001b[K\n",
            "remote: Compressing objects: 100% (35/35), done.\u001b[K\n",
            "remote: Total 52 (delta 12), reused 52 (delta 12), pack-reused 0\u001b[K\n",
            "Unpacking objects: 100% (52/52), 5.19 MiB | 7.89 MiB/s, done.\n",
            "/content/RLOR\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "id": "dbe3c5ed",
      "metadata": {
        "id": "dbe3c5ed"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "import torch\n",
        "import gym\n",
        "from models.attention_model_wrapper import Agent"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "985bf6e6",
      "metadata": {
        "id": "985bf6e6"
      },
      "source": [
        "# Define our agent"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "id": "953a7fde",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "953a7fde",
        "outputId": "06f10aaf-57ca-4870-d22b-f71a14ea4ec4"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<All keys matched successfully>"
            ]
          },
          "metadata": {},
          "execution_count": 3
        }
      ],
      "source": [
        "device = 'cuda'\n",
        "ckpt_path = './runs/tsp-v0__ppo_or__1__1678160003/ckpt/12000.pt'\n",
        "agent = Agent(device=device, name='tsp').to(device)\n",
        "agent.load_state_dict(torch.load(ckpt_path))"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "2cbaa255",
      "metadata": {
        "id": "2cbaa255"
      },
      "source": [
        "# Define our environment"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "id": "c2bd466f",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c2bd466f",
        "outputId": "92450c8d-f5db-444d-f465-da4a98667799"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:31: UserWarning: \u001b[33mWARN: A Box observation space has an unconventional shape (neither an image, nor a 1D vector). We recommend flattening the observation to have only a 1D vector or use a custom policy to properly process the data. Actual observation shape: (50, 2)\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/core.py:317: DeprecationWarning: \u001b[33mWARN: Initializing wrapper in old step API which returns one bool instead of two. It is recommended to set `new_step_api=True` to use new step API. This will be the default behaviour in future.\u001b[0m\n",
            "  deprecation(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/wrappers/step_api_compatibility.py:39: DeprecationWarning: \u001b[33mWARN: Initializing environment in old step API which returns one bool instead of two. It is recommended to set `new_step_api=True` to use new step API. This will be the default behaviour in future.\u001b[0m\n",
            "  deprecation(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/vector/vector_env.py:56: DeprecationWarning: \u001b[33mWARN: Initializing vector env in old step API which returns one bool array instead of two. It is recommended to set `new_step_api=True` to use new step API. This will be the default behaviour in future.\u001b[0m\n",
            "  deprecation(\n"
          ]
        }
      ],
      "source": [
        "from wrappers.syncVectorEnvPomo import SyncVectorEnv\n",
        "from wrappers.recordWrapper import RecordEpisodeStatistics\n",
        "\n",
        "env_id = 'tsp-v0'\n",
        "env_entry_point = 'envs.tsp_vector_env:TSPVectorEnv'\n",
        "seed = 0\n",
        "\n",
        "gym.envs.register(\n",
        "    id=env_id,\n",
        "    entry_point=env_entry_point,\n",
        ")\n",
        "\n",
        "def make_env(env_id, seed, cfg={}):\n",
        "    def thunk():\n",
        "        env = gym.make(env_id, **cfg)\n",
        "        env = RecordEpisodeStatistics(env)\n",
        "        env.seed(seed)\n",
        "        env.action_space.seed(seed)\n",
        "        env.observation_space.seed(seed)\n",
        "        return env\n",
        "    return thunk\n",
        "\n",
        "envs = SyncVectorEnv([make_env(env_id, seed, dict(n_traj=1))])"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "c363d489",
      "metadata": {
        "id": "c363d489"
      },
      "source": [
        "# Inference"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "id": "bbee9e3c",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "bbee9e3c",
        "outputId": "11750d60-eb7c-4d9c-8b40-3a8a92021ffe"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:174: UserWarning: \u001b[33mWARN: Future gym versions will require that `Env.reset` can be passed a `seed` instead of using `Env.seed` for resetting the environment random number generator.\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:190: UserWarning: \u001b[33mWARN: Future gym versions will require that `Env.reset` can be passed `return_info` to return information from the environment resetting.\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:195: UserWarning: \u001b[33mWARN: Future gym versions will require that `Env.reset` can be passed `options` to allow the environment initialisation to be passed additional information.\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:165: UserWarning: \u001b[33mWARN: The obs returned by the `reset()` method is not within the observation space.\u001b[0m\n",
            "  logger.warn(f\"{pre} is not within the observation space.\")\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:141: UserWarning: \u001b[33mWARN: The obs returned by the `reset()` method was expecting numpy array dtype to be float32, actual type: float64\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:227: DeprecationWarning: \u001b[33mWARN: Core environment is written in old step API which returns one bool instead of two. It is recommended to rewrite the environment with new step API. \u001b[0m\n",
            "  logger.deprecation(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:234: UserWarning: \u001b[33mWARN: Expects `done` signal to be a boolean, actual type: <class 'numpy.ndarray'>\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:141: UserWarning: \u001b[33mWARN: The obs returned by the `step()` method was expecting numpy array dtype to be float32, actual type: float64\u001b[0m\n",
            "  logger.warn(\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:165: UserWarning: \u001b[33mWARN: The obs returned by the `step()` method is not within the observation space.\u001b[0m\n",
            "  logger.warn(f\"{pre} is not within the observation space.\")\n",
            "/usr/local/lib/python3.9/dist-packages/gym/utils/passive_env_checker.py:260: UserWarning: \u001b[33mWARN: The reward returned by `step()` must be a float, int, np.integer or np.floating, actual type: <class 'numpy.ndarray'>\u001b[0m\n",
            "  logger.warn(\n"
          ]
        }
      ],
      "source": [
        "num_steps = 51\n",
        "trajectories = []\n",
        "agent.eval()\n",
        "obs = envs.reset()\n",
        "for step in range(0, num_steps):\n",
        "    # ALGO LOGIC: action logic\n",
        "    with torch.no_grad():\n",
        "        action, logits = agent(obs)\n",
        "    obs, reward, done, info = envs.step(action.cpu().numpy())\n",
        "    trajectories.append(action.cpu().numpy())"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "id": "f0fbf6fd",
      "metadata": {
        "id": "f0fbf6fd"
      },
      "outputs": [],
      "source": [
        "nodes_coordinates = obs['observations'][0]\n",
        "final_return = info[0]['episode']['r']\n",
        "resulting_traj = np.array(trajectories)[:,0,0]"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Results"
      ],
      "metadata": {
        "id": "5n9rBoH5Q8gn"
      },
      "id": "5n9rBoH5Q8gn"
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "id": "dff29ef4",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "dff29ef4",
        "outputId": "dcffcda5-5728-464c-ee3e-0fcc702443ff"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "A route of length [-5.908508]\n",
            "The route is:\n",
            " [26 34 33 49 37 21 48 43 31 28 42 29 47 39 38 23 27 30  7 32 24 40 20 14\n",
            " 25  1 18 22  0 11  2 16 45 15 46 12 17 41  8 13  3  6 44  9 10 19 36  5\n",
            " 35  4 26]\n"
          ]
        }
      ],
      "source": [
        "print(f'A route of length {final_return}')\n",
        "print('The route is:\\n', resulting_traj)"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "b009802e",
      "metadata": {
        "id": "b009802e"
      },
      "source": [
        "## Display it in a 2d-grid\n",
        "- Darker color means later steps in the route."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "id": "dc681a06",
      "metadata": {
        "tags": [
          "\"hide-cell\""
        ],
        "cellView": "form",
        "id": "dc681a06"
      },
      "outputs": [],
      "source": [
        "#@title Helper function for plotting\n",
        "# colorline taken from https://nbviewer.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb\n",
        "import matplotlib.pyplot as plt\n",
        "from matplotlib.collections import LineCollection\n",
        "from matplotlib.colors import ListedColormap, BoundaryNorm\n",
        "\n",
        "def make_segments(x, y):\n",
        "    '''\n",
        "    Create list of line segments from x and y coordinates, in the correct format for LineCollection:\n",
        "    an array of the form   numlines x (points per line) x 2 (x and y) array\n",
        "    '''\n",
        "\n",
        "    points = np.array([x, y]).T.reshape(-1, 1, 2)\n",
        "    segments = np.concatenate([points[:-1], points[1:]], axis=1)\n",
        "    \n",
        "    return segments\n",
        "\n",
        "def colorline(x, y, z=None, cmap=plt.get_cmap('copper'), norm=plt.Normalize(0.0, 1.0), linewidth=1, alpha=1.0):\n",
        "    '''\n",
        "    Plot a colored line with coordinates x and y\n",
        "    Optionally specify colors in the array z\n",
        "    Optionally specify a colormap, a norm function and a line width\n",
        "    '''\n",
        "    \n",
        "    # Default colors equally spaced on [0,1]:\n",
        "    if z is None:\n",
        "        z = np.linspace(0.3, 1.0, len(x))\n",
        "           \n",
        "    # Special case if a single number:\n",
        "    if not hasattr(z, \"__iter__\"):  # to check for numerical input -- this is a hack\n",
        "        z = np.array([z])\n",
        "        \n",
        "    z = np.asarray(z)\n",
        "    \n",
        "    segments = make_segments(x, y)\n",
        "    lc = LineCollection(segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha)\n",
        "    \n",
        "    ax = plt.gca()\n",
        "    ax.add_collection(lc)\n",
        "    \n",
        "    return lc\n",
        "\n",
        "def plot(coords):\n",
        "    x,y = coords.T\n",
        "    lc = colorline(x,y,cmap='Reds')\n",
        "    plt.axis('square')\n",
        "    return lc"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "id": "bb0548fb",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 282
        },
        "id": "bb0548fb",
        "outputId": "3e967b86-32e9-4be3-e5b7-c8a457aa12a7"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<matplotlib.collections.LineCollection at 0x7f15aabac8b0>"
            ]
          },
          "metadata": {},
          "execution_count": 9
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD4CAYAAAAjDTByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4QElEQVR4nO2dd3iUVdqH72dm0kklBUKAUBIhdAgqIk1aAAUBRWy7Kuradm27a1td1911dXVddXU/xYJ1VURUFKSIUpTeqyGhJgTSgCQkpMzM+f6YgBECTJJ3Wubc15UrM/OeOe8vk/mdfp4jSik0Go3/YfK0AI1G4xm0+TUaP0WbX6PxU7T5NRo/RZtfo/FTLJ66cWxsrEpOTvbU7TUav2D9+vVFSqm4+q55zPzJycmsW7fOU7fXaPwCEdl/tmvnbfaLyNsiUiAi285yXUTkZRHJFpEtItK3KWI1Go17cKbP/w6QcY7rY4CU2p/bgf9ruiyNRuNqzmt+pdQy4Mg5kkwA3lMOVgFRItLaKIEajcY1GDHa3wbIqfM8t/a1MxCR20VknYisKywsNODWGo2msbh1qk8pNV0pla6USo+Lq3cAUqPRuAkjzH8QaFvneVLtaxqNxosxwvxzgF/VjvpfDJQopQ4ZkK9Go3Eh553nF5GPgKFArIjkAn8GAgCUUq8B84CxQDZQAdzsKrEajcY4zmt+pdS157mugLsNU6TRaNyCXtuv0fgp2vwajZ+iza/R+Cna/BqNn6LNr9H4KR7b0ust5H35FftnzsJWWUVkt65EdksjolsaEakpmAIDPS1Po3EZfm3+fW+9Q9YLL9HrlX9jq6mhdPtODi9aTOaL/6F8/wFadOxAZLc0Irt1JSItjchuaQS3SkBEPC1do2kyfml+pRS7nn2e3FmzuWTuF4Qltweg9aiRp9LYKisp25VFybbtlGzfSf73/0fJtu2gqFMYOFoK4RekYgkN9dSfo9E0Cr8zv7LZ2PrHRzi6YSOXzptDUHz9G4zMwcFE9exBVM8eP79XKaoKCinZvoOS7Tso+nEFu6e/RVn2bkLbJhGZ9nO3IbJbV0LbtvXrVoKtpoacL7+icP1GJCiQpNEjie+fjsnid187r0Q8dWJPenq6cncYL1tlJRt+czfWklLS33ubgIhwQ/K119RQlpVN6Y6dpwqGku07sR4/TmRaVyJqWwiRaWlEdO1i2H29DaUUZVnZFCz7gfxlyzm6eQshycm0u2oSpXv3kbNwEeU5B2kzfBhtR4+kzYjLCG4Z42nZzRoRWa+USq/3mr+Yv6a0lLU33kxgTAx9XnsFc1CQy+9ZdeRIbYHgKBRKd+yg9KdMguLiaguDn1sKLTokI2azyzUZTfmBHAqW/0DBsh8oWP4DYrYQP+RSEgYPIn7QpYS0bvXL9HmHyF34LTkLFnFo+Q9Ed+1C24xRtB09kuhuaX7dUnIFfm/+yvwCVl9zPdHp/ejx7N89ajJls3F87z5KT7YQalsLVYWFRHS54NTA4snxhMDoaI9prY/KwkIKlv9IwbLlFCz7gZrjx4kfdCnxgy8lYcggwtq3d9rA1spKDv+wgtwFi8hZ8C32mmqSRo+k7eiRtB58KQFhYS7+a5o/fm3+8r37WHXVVJKuuZrUPzzgtTVLTWkZpTt/omSHo1AorW0tWMLDTxUEkd3SiEjrSnhKZ0wBAW7RVV1SSuGPKxy1+9LlVBzMI27gAOKHDCJh0KVEdO1iyGeqlKIkK5ucBYvIXbCIoo2biL/oQtrWFgbhtYOymobht+Yv2bKV1VNvJPUP95N8869dei9XoJSiIieHku07f24pbN9BRe5Bwjt3+sUUZGS3NIIT4pt8T2tFBUWr1zpq9uU/UJq5i5b900/V7tG9erplwK66pJSD3y9xtAoWLiY4JvpUqyDh4gvdVvj5On5p/qLlP7L+1t/Q47lnSBx/ucvu4wmsFRWU/pR5qnVQssPRUhCL2TGoWKelEJ6agjk4+Kx52WtqOLJ+I/m1zfijmzYR1b078YMvJX7IIFqm93PL+Mi5UHY7RRs3n2oVlO7dS+KwIbQdNZKkUcMJ0SHhzorfmT9vztds/cPD9HvzdWIHDXTJPbwNpRSVhw7/ojAo2b6D43v3Eda+3c/dhm5dCYiIoGjtegqWLqdozRpadOjgGKAbfCmxAy4moIV397Ur8vPJXbSY3AWLyFuyjIjOnU91D1r26oGY9Kr1k/iV+ffNeJddz/2biz5+n8g6c/T+iq2qyjENWWcK0hwVSWB0NAmDLyXu0ksIivHd6TZbdTX5K1efahVUl5WRNHK4Yypx2FACwlt4WqJH8QvzK6XY9dwL5H7yKRd/+hFhHTsYlrfGdyjdvYec2tmDgrVrie+fTttRI0gaPZLIzp08Lc/tNHvzK5uNbQ//iSNr13HRJx8aMvCl8X1qjh8nb8kyR6tg4bdYQkNpO3okSaNH0mrgAMx+sHGrWZvfVlXFxjt/S3VxMf3fn0FARIQB6jTNDaUUR7ZsPdUqKNm1i9aDB9F29AiSRo0gtFWr82figzRb89eUlrHuV7dgiYyg7+uvnnNUW6Opy4miIg4u+o6cBYs4+N0SYtP7kHDJJXS+ehLh7dt5Wp5hNEvzVxUUsnrq9UT16U2Pf/7DJ5fGarwDu9XK4VVr2D1rNnu++IqolM50njKZjhMnEBLb0tPymkSzM3/5vv2svvpa2kyeSOpDv/faVXsa38NWXU3u4u/J/vQzDiz8llYXXUjna64iedwYn1xu3KzMX7JtO2uuuYGUB+4ledpNxgvTaGqpOX6cfXO/IWvmZ+SvXkO70SPpfPVkkoYPw+wjKwybjfmLflzB+ltup8ezT5N45XgXKdNozuREYRG7P/+S7JmfUZK9m44Tx5My5SoSLurv1YuKmoX5D309jy0P/pG+0/+PuCGDXKhMozk3pfv2k/3pbLJnzqKmooLOV08mZcpkYtK6elraGfi8+fe/9wGZzzzPhf97l6jevVysTKNxDqUUR7ZtJ+uTWWTPmk1QdDQpV0+m09WTCG+b5Gl5gA+bXylF1r9eJOd/H3PRpx/RolNHN6nTaBqGsts5tGIl2TM/Y++XXxPVJZWUa66i44TxHo1W5LPmryosZO0NN5H+7tsEt0pwkzKNpmnYqqvJWbSY7E8/I+fb72h9yQA6T5lM+7EZBLg50Ou5zO/VkRQDoqOp3LsPZbN6WopG4zTmwECSx40hedwYqsvK2Pf1N2R++DHL7/s97ceMpvOUq0gaNsTjgUy9d5gSMFksxI8aScE3CzwtRaNpFIHh4aReO4Vxn8/kmg2riO/Xl/X/eI4PUnvww+8f5vDqtXiq9e3V5gdIGDua/HnzPS1Do2kyofHxdL/jNiZ+N58J384jND6OpXf9jo96prPmqac5+tMut+pxyvwikiEimSKSLSIP13O9nYh8LyIbRWSLiIw1SmDs0CGUbNxM9dGjRmWp0XicyI4d6PvHB5mybgWjPpiBrbKSr8dPYtbAYWx+6RWOH8xzuYbzml9EzMCrwBggDbhWRNJOS/YnYKZSqg8wFfivUQLNoaG0HDSQwkWLjcpSo/EaRITYXj0Z8PRTXL9zMwP+8RTHsrKZNWAIX42dwM4Z71F5xDUVnzM1/4VAtlJqj1KqGvgYmHBaGgWc3EsbCRhabMWPzdBNf02zx2Q202bwIIa88iI3Zm2j+52/Ife7JXzUoy8Lpt7IgQWLjL2fE2naADl1nufWvlaXJ4EbRCQXmAf8tr6MROR2EVknIusKCwudFhk/agTFS5djO3HC6fdoNL6MOSiIDleMZeT7b3P9zi20G5PBkof/hLWqyrB7GDXgdy3wjlIqCRgLvC8iZ+StlJqulEpXSqXHNSDiamBMDBE9e1C0ZJlBcjUa3yEwIpwWye0IDA/HYmAkZWfMfxBoW+d5Uu1rdZkGzARQSq0EgoFYIwSeJGFcBvnf6Ka/xj/Z+81COowZbWiezph/LZAiIh1EJBDHgN6c09IcAIYDiEhXHOZ3vl3vBAljMihYsAi7VS/4MRpltVJ9YL+nZWjOwd75C+iQMcrQPM9rfqWUFbgHWADsxDGqv11EnhKRk/tqHwRuE5HNwEfATcrglQshbZMISUzk2Br3nuxrBPbqak9LOCdH33uXnGumkP/Yw9j1uIrXcTQrm5rj5cT17mlovk71+ZVS85RSqUqpTkqpv9e+9oRSak7t4x1KqYFKqV5Kqd5KqYWGqqwlfmwG+XO/cUXWLqEq9yD7n/o7G3r2Y88993pazlkp/2E5cY88CjVWcqdMpjo7y9OSNHXYO38RHTJGGR6xyutX+NWl1bgx5H8z32PLIZ1BKUXZmrXsuu1OtowYjbLWkPbVbI6vXM3x9Rs8Le8M7JWVnNiwgbBhlxH/7HNE3XQzub+6ntIvZntamqaWvd8soMMYY5v84GPmb9G1C5hMlG3f4WkpZ2Cvrqbos8/ZlnE52b+7n/CL+tNn7UqSn3qS0JQUWt97D3nPveBpmWdwYs1qgrumYQ4PR0SImHw1bd75gKNvvE7+ow9hr6jwtES/pqqklIING2k7dLDhefuU+UWEhDHeteCnpqiY3H+/xMb+Ayj46BOSHryP3j8upfWtt2AJDz+VruXUKVTu3kPZmrUeVHsm5cuWETb4l1+soNRU2s6cDXZF7pTJVGXpboCnOLD4e1oPuNglwUN9yvwACWMzyJ/n+X5/+Y6d7L7/92waOISqnFy6fPQBabM+JnrUyHrDiJsCA2l932/Je967av/y5WeaH8AUFkbCM/8katqtHPz19ZTOnuXV3a3myt5vFtBxrLFTfCfxOfNHX5hO1eF8KvYfcPu9lc3GkQUL2TH5Gn669gaC2rWl949L6fTCc4Q5Eb+t5ZSrqNp/gLKVq92g9vzU5OZiKykhqOvpWzV+JmLiZNq8+yHH3n6Lgof/iL283I0K/Ru7zca+hd+SbPAU30l8zvxiNhM/ehT5btzjby0r49Abb7Fp4BAOvvAS8ddNpc/alSTdfy8BDTjUwRQQQOL993pN7V++fBlhgwadN/psUEoKSTM/A4uZnCmTqNrl3q2n/kr+ug2EtWpFhIviAfqc+cHR9C9wQ7+/cv9+9j3xJBv7D6BszTo6/+dFus//mtjJEzE18pDHlldNojovj9IVKw1W23Ac5h/iVFpTaCgJf3+G6Nt+w8GbbqB01qe6G+Bi9syb75JR/pP4pPlbDhlE6bbtVBUVG563UoqSH1eSedM0to25AgkIpOe3C0h94/8I75/e5LlWsVhoff+95D33gkfNo6qrqVi1itCBAxv0vogrJ5H03occe3cGBQ/9QXcDXIgrlvTWxSfNbw4OJnboYAoXGrfF0V5ZScFHn7B1+Gj2PvwoUcOG0mftKto//ihBSadvYmwaLSddSU1BAWU//Ghovg3hxMaNBHbogKVlw8+iC+zs6AZIYCA5V0+ialemCxT6N6UHcqjIzychva/L7uGT5geIN2jKrzo/n5xnn2dj+gCK53xNuz89Qq+li0n49Y2Yw1wTaVUsFhIfuM+jtb+jyd/4uWNTSAjxf3uamDvu4uBNN1Ly6UzdDTCQvfMXkjxqBCYXHkDru+YfeRnFP6zAWt64RSjWsjKy77mPzYOHU1NcTNrsmXT96H2iLhvmluOXYq4cj/XoMUqXLnf5veqjfNkyQgc1/eSj8PETSPrgI0ref5f8Pz6IraTEAHUaVzf5wYfNHxAVRVS/PhR9v6RR78/590sos4k+q5bT8Z//ICQ1xViB50HMZhIfvI+8591f+1sLCqg5mEtIr96G5BfYsRNJMz/DEp9A3vgxFP/5MSo3rtctgUZSU17OoZWraDd8mEvv47PmB0gYN6bRTf+y9RuJmzQRS3S0waqcJ/qKcdjKyij9bolb71v+w3JCLxmIGBg33hQcTOwfHqL1p59jaZ9M8Z//RN4VGZS88RrWw4cNu48/kLNkGfF9+xAUGXH+xE3Ap80fnzGKwkWLsdfUNOh9SinKd/5EaNcuLlLmHCdr/4Nurv3rW9JrFJb4BCJvuY3EL+cR+/dnseblcWjyePJ/M43yb+aiDAxD1VxxR5MffNz8IYmJhCa352gDV8xVHzqEKSCAwHjnQ4m5iujLx6EqKyn51j3RiZXNRsWKHwm71LUnHYsIQb160/LPT9Fm8TJajL+S47NnkTt8MMV//TNVW7fobkE9KKVctovvdHza/ACxw4ZQsPi7Br3HG2r9k4jJROKD95P3/L/dYobKrVsxx8UR0Lq1y+91ElNwMGHjriDhjRm0/vRzzPEJFD30IIcmXk7JjDexFRka9MmnKdy0hYDwFkR37uTye/m8+Su276BFu7bnT1j3PTt2EuYl5geIGpuBstkoMXDdwtkoX768SVN8TcXSOpGo39xF4tyFxDz+F2r27CZv/FgK7rmD8kULUDXeHfXI1eydv5COYzLcci+fNn/Rwm+pyN5Nmxuua9D7ynf+5NRGHHdxsvY/6Ibav3z5Upf19xuCiBDcL53Yv/6DNt8uIXTkaMr+9wG5wwdz5Jm/Ub3T+2I2uIM98+aTnDHSLffyWfPbTpwg89HHueCZv2NqYDhjb2r2nyQqYxSCcMyFG5Zsx45RnZVFSL96T2z2GKbQMFpMmEirGe/T6sOZmFqEU3Dv3eRdNYHSD97FduSIpyW6DWkRDm46vddnzb/vpVcI79mDlsOc25hyEntNDZV79hCamuoiZY1DREj8w/2OeX+73SX3KF/xIyH9L2xwYelOAtq2I+qee2kzfzHRv3+Y6m1bOXj5KAruu4eK7xejGjiz42t0GjOKTW/McMu9fNL8Fbv3kDvjXVL/9mSD33siezdBbdpgDg0xXlgTiRw5AgkMpHjmLJfk78opPqMRk4mQiwcQ+8zzJC34npABl3DkqSeo3rnd09JcSo9fXc+ehd9SlnfI5ffyOfMrpch85HHa//ZughMTG/z+Ci9s8p9EROjw8gscfv558l/+D8pmMyxvpVST1/N7CgkKonrFckJ69ybwHIFHmgPBUZF0vXoSm956x+X38jnzF3w9j8q8PNr95tZGvb98509eNdJ/OiGpqVzw9RyOr1jB7qnXUp1nzJmnVZmZmIKDCWzf3pD83IWqqqL4wd9CQAAx/3wRCWhcHAVfou8dt7L5rXcNPZevPnzK/Nbj5ex6/Em6PPs0poCARuVRvvMnQr1opL8+Alq1ouOHHxA+dChZl4/n2Nx5Tc6zfNlSwgY3bHzE06jKSorvvwtTaBgx//gX0sj/ua8R27ULcd3TyJz9pUvv41Pm3/vCi0RfcjHRAwc0Oo+Knd41x382xGwm4e676PD2mxx65lly/vgwtiaE0a7wsSa//cQJiu+9A1NUNNF//6ffGP8k/e76Deteed2lU78+Y/7jmbvI+9/HpPz58UbnYS0tpebIUYJ9qOkb2rs3qd/MRdVUkzX2ciq2bmtUPnaThUAvm+E4G/aKcop/ezvmhFZE//VZQzcg+QqdMkZSeewYeS48ns4nzK+UIvOhR+nw4P0EJcQ36L12q5Wyrds4+PY77LznPrft1zcSc4sWtPv3CyTcdy97bvwVBdPfaPB0oDkujpKvv3aRQuOwlx+n+J7bsbRtT9STT9cbBt0fEJOJvr+Zxvr/TnfdPTy1uSI9PV2tW+dcqXZo1mz2v/oaFy6ah+k8tUDNkSOUrN9A6dp1lKxbT9mmLQQltiYyvR8R6f2IzRhNYAMi7nobVQdyOHDvvZhCw2j3wr8IcLIwPLFlCwfuuovUpUu91lD2sjKK77kNS8oFRD36Z58rpI2m8lgJr3XtzbT1KwhPbNxeDBFZr5Sqd1WX17enrKWlZD35N3rOmH6G8ZXNRnnmLkrXradk3XpK1q6jOr+AiD69ieifTru77ySibx8CPLhn32iC2rWl86czyX/pZXaNHUfbZ58hYsTw874vpGdPLLGxlH3/PREjRrhBacOwl5VSdNetBHbrTuRDjxt+KKUvEhwVSdo1V7HprXcY9Pgjhufv9TV/5qNPYKuoIO3F56kpKaF0/UaH2deuo2zjJgJiW56q1SP7pxPW5QKvrdmM5vjqNRy4734iR46k9aMPYwoOPmf6o7NnU/LFFyS/956bFDqHveQYRXfeQmCfdCJ//4g2fh2Kfsrk44wJ3JG5GUsjVmaeq+b3avMfW7eejVOuIz5jFOXbtlOZk0t4r55E9O/nMHy/fj7dhDcC67ESch95lKrdu2n/n5cJvuDsg3r2qioyBw6k48yZBHXs6EaVZ8d29CjFd95C0EUDiLjvD9r49fDJFZPpdu0Uul93TYPfey7zo5TyyE+/fv3U+ajML1Abrp6qct58W5Vu3qJsNTXnfY8/YrfbVfEnn6itvfqownffU3a7/axpDz37rMr7y1/cqO7clM14Qx175q/n1OzvZM2dr9655LJGfUbAOnUWDzo1oiIiGSKSKSLZIvLwWdJMEZEdIrJdRP7X4CKqHoLi4+gz8yOSpt1MeM8e5x3s81dEhJgpU0iZPYsjH3/Cvltvw3qWnXAx113Hsc8/95qjt2vWrCB40BBd458DV037ndf8ImIGXgXGAGnAtSKSdlqaFOARYKBSqhtwn6EqNU4R1LEjnb+YTVDHTuzKGFvvoSCBSUmE9u/PsS++cL/AerDlHcTcpmHBWPwNW3U1Cen92Dnrc0PzdabmvxDIVkrtUUpVAx8DE05LcxvwqlLqKIBSqsBQlRqnMQUGkvjYI7R9/jkO3P8AeU//A3v1L6PjtPzVryh+7z2Px9BTNhu2gsOYWzd8g5Y/cGT3HhY9/Dgvde5BxZGj9Lz5RkPzd8b8bYCcOs9za1+rSyqQKiI/isgqEak3DpGI3C4i60RkXWGhjtvmSsIHD+KC+fOoysome+JkqvbsOXUtbOBAVE0NFWvXelAh2AsOY4qOQRp56GlzxG618tOXX/PhuEnMGJqBmM3csmwR1331KfEG70kxqhNtAVKAoUASsExEeiiljtVNpJSaDkwHx2i/QffWnAVLy5Ykv/0mxe+9T9akq0h89GGir74aEaHlDTdw5P33CbvwQo/ps+UdxJxo7DmIvkpZ3iE2znifjW+/R2S7tvS7/RaumTS+UdN7zuKM+Q8CdTtlSbWv1SUXWK2UqgH2isguHIWBZ6sWDSJC7K9/RdjFF3Hgnt9RumQpbf/xNFGTJ5P/4ovUFBQQEN+wJdNGYTuYiznRNWfP+wJKKfZ9v4x1b7zNviXL6XbVRKZ+8QkJPbq55f7ONPvXAiki0kFEAoGpwJzT0nyBo9ZHRGJxdAP2oPEaQi64gJSvvsQSG0vmmLGc+CmTqCuu4OhHH3lMk7/W/CeOHmPVy//lvz0vYuEfH6PDsCH8btdmxv7nX24zPjhR8yulrCJyD7AAMANvK6W2i8hTOOYQ59ReGyUiOwAb8AelVLErhWsajik4mKSn/kLp4MHsv/NOIkePpvjDD4m76y6PbJm1Hcwh8KJL3H5fT5G3bgPrXn+LzK/m0TljFONff5mkARd5bJrTqT6/UmoeMO+0156o81gBD9T+aLyciBHDSZ03jwP3P4C1vIIjH39MyxuNHUl2BkfN37yb/dXl5WyfOZv1b8zgxJGj9LvtZoY//RfC4mI9Lc37N/ZoXENAQjwdP3iPQ8/+k5A+fTyiwZaX22yb/YU/ZbLhjRls/ehT2l5yMUOffJROIy7zqp2K2vx+jJhMJD5S74JNl6MqK7GXlmCK88xgoyuwVVfz05y5rJ8+g+JdWfS+6QZuW7WUyHbe2brR5td4BNvhPMwJrZrFDsySA7lseOtdNr37AS1TU+h3+810GT8Os5evX9Dm13gEX5/mU3Y7uxctZt30GeSuXE2Pa6/mhvlfENflAk9Lcxptfo1HsObm+GR/v7ywiM3v/Y/1b8wgJCaafrfdzKT33iAwLMzT0hqMNr/GI9h3biXgwsZHYXYnSilyV65m3fQZZM9fyAXjxzH5g7dITO/raWlNQptf43aU1UrNyuWE3nWfp6Wck6qyMrZ+9Cnrp7+Ntaqa9NtvJuPfzxISHeVpaYagza9xO9YtGzEltsEc38rTUurl0JatbJg+gx2ffUHy0EGMeu5pkocOanYxB7T5NW6nevn3BF46zNMyzsoP//oPmd8soseUifT91XUk9e/X7IwPPhK3X9N8UEo5zD/Ye81/1Tuvc8vCOYS2bMln0+7muU7dmfvgI+z7YQV2Aw9P9TS65te4Fdve3WCzYe7svVNiIkJi7x4k9u7ByL88RsGOn9g2ew5f3ftHjhcWkTZhHN0nTSB50CWYfTi0nFdH79U0P068+wb24kLCHnjU01IaRVHWbrZ/Podts+dw7EAOaePH0W3iFXQcNhiLFy7q8dnQ3ZrmR8mt1xFy+28J9JFpvnNxdN8Btn8+h+2fz6FwVzZdxo6m26TxdB4xjIDznKHgLrT5NV6BvbiIY9eOJ3ru0mZ36m5J7kF2fDmX7Z/P4dDmraRmjKTbxPGkZowgMDTUY7q0+TVeQeWXs6hZv5rwp57ztBSXcjy/gB1z5rJt9hxy166n8/BhdJ80ngvGjiIoPNytWrT5NV5B6e/vJmjUOIJGjfW0FLdRUXyEHV/NY/vnc9j/wyo6DLmU7hPH0+WKMYRERbr8/tr8Go+jTlRw9PJhRH2xCFN4hKfleIQTx0rInDufbbPnsGfpctoNuJDukybQ9YqxhLno2DmfPqVX0zyoWbMSS1oPvzU+QEhUJL2vv4be119DVVkZmd8sYvvnXzHvD4+RlN6XbhOvIG3C5YS3SnCLHm1+jVuoXv49AYOGelqG1xAUHk7PKZPoOWUS1RUVZC38ju2zv2Th43+lVY9udJs4nm5XXk5kkut2Pupmv8blKJuNo1cMI/KtjzC39r1tvO7EWlVF9rffs/3zr9j59TfEpnSm28Qr6DZxPDEd2jc4P93s13gU67bNmFrGauM7gSUoiC7jMugyLgNbTQ17lixn2+w5vHrxMEb9/QkuuvUm4+5lWE4azVmoXv49gYMu87QMn8McEEDKyMtIGXkZMamdyduy3dD89cYejcupXr6EQN3fbxLF2XuIT+1saJ7a/BqXYtu/F1VRjrmL+06iaY4U7comLjXF0Dy1+TUuxdHkH9os98O7k8Ks3cSmdjI0T21+jUtxmN979+77AtXl5VQUHyGqXdvzJ24AesDPx1BlpVh3bEFEkMQkTK0SEYv3bZJRVivV8+egqioJ6HeRp+X4NEVZu2nZqQMmg0/70eb3EVR1NTVfzaT6k3cx9R+IKsjHnpeDKipAYuMxJSY5flq3xdSmbe3ztkhIiHt1WmuoXvA1Ve9Nx5TQmhaPPIl44T53X6JgVzZxBg/2gTa/16PsdqxLF1I147+YkjsR8s/XMCf/3PdT1hpU/iHsB3Ow5+Viz8uhZttGx/PDeUhoWJ3CoLZAqH0uEVGG9cVVTQ3V8+dQ9f4bmFonEfrIX7H0rndtiaaBFO3KJjZFm9+vsG5eR9WbLwMQ/OATWHqdaSaxBCBt2mFq0+6Ma8puRxUXYc87UFsw5FKzcumpggKlMLVO+mXh0Kado2CIjXfqUElVU0P1vM+p/OAtzG3bE/qnp7H09O149t5G4a5sUkYMNTxfbX4vxLZvN1Vvv4J9/x6Cbr4Ly+CRjTrdVUwmJC7ecRhmPQWHKi2pLQgchYFt22ZqFn7t6E6UlWFqlYgp8eeCQU4WDq0SQSmq5852mD65E2F/fhZL994G/PWa0ynalc0ld95qeL5OmV9EMoCXADPwplLqmbOkmwzMAvorpfTC/UZg3bKByr89RODUmwn407Mu7S9LRCTmiEjMXbufcU2dOIH9UO6proRt/x7sK5dhz8tFFeVj6toTAgIIe+p5LN16uUyjv6OUonBXNrGe6POLiBl4FRgJ5AJrRWSOUmrHaenCgXuB1Yar9COsP3xLwPXTCJww1aM6JCQEc8cUzB3PXFiirDWoykpMLdwblcYfOV5QiCnAQljLGMPzdqYteSGQrZTao5SqBj4GJtST7q/As0Clgfr8jxMVXr/nXSwB2vhuojAzizgXDPaBc+ZvA+TUeZ5b+9opRKQv0FYpNddAbX6JOlGBhHgu4KPGuyjM2k3cBZ4z/zkRERPwAvCgE2lvF5F1IrKusLCwqbdunpyoAG1+TS2umuYD58x/EKi7rjCp9rWThAPdgSUisg+4GJgjImcMLyulpiul0pVS6XFxcY1X3YzRNb+mLoW7sjxa868FUkSkg4gEAlOBOScvKqVKlFKxSqlkpVQysAoYr0f7G4c6UY6EhHlahsZLKN6zj9jOxm7oOcl5za+UsgL3AAuAncBMpdR2EXlKRMa7RJU/o5v9mjqUn6jE7KLTf5ya51dKzQPmnfbaE2dJO7TpsvwX3ezX1CWsZQzlRcWQYnztr1f4NQBVWYH1x8VQXg7BwUhgsON3UEjt72AICobgkNrHIWCxOL1+XikFlSfAzZtxNN5LeHwcZfkFLslbm78B1Hz8BvbDeZgS2kBVJfaqE1BZiaqqhKpKVO1zqk6gqqqg6gTYVZ2CIQSCgpFgRyEhtc9PXlfmADBbELP+t2gchMfHUVbgmpkx/S1zElVehm3ZQoKfm4G0jHf+fVarozCoLRQchUQlVJ6o/f1zwSFVlQT/7SUX/hUaX8NR82vzexTr4q8x97m4QcYHEIsFLOFImF4Rp2k44QnxFGbtdkneOoyXEyirFdv8WVjGTfG0FI2f0SI+ltIC1/T5tfmdwLZ6CZLQBlPHCzwtReNnhCfEc7ygyCV5a/OfB6UU1q8/wXL5NZ6WovFDXDnar81/Huw7N8OJckx9BnhaisYPCU+Id9lovzb/ebDOnYll7JRGRdLRaJpKaEw0laVl2GpqDM9bf6PPgf1QDvbMrZgHj/a0FI2fYjKZaBHbkuOFxvf7tfnPgfWbWVhGjEeC9Yo7jedoER9HqQv6/dr8Z0EdL8X2wyIsoyZ6WorGzwlPiOO4C/r92vxnwfrtHMz9BiIxsZ6WovFzXLXKT5u/HpS1Buv82VjG6ek9jecJj3fNiL82fz3YVnyHqU17TMmuiaCi0TSEFvGxLpnr1+Y/DaWUY3rvcr2UV+MdRCTE69F+d2DfvhGqqzD10ifLarwDPdrvJqxzZ2IZpxf1aLwHPdrvBux5B7Bn79CLejRehR7tdwPWeZ9iGTkBCQzytBSN5hQt4uM4XljkCPNmINr8tajSY9hWLNaLejReR0BQEIGhoVQcPWpovjqSTy3WRV9ivnAwEmX8gYj+hrJaIf8AqqTYMXYSHQ/R8bpF1QQc/f4iwmKM+35q8wOqphrrws8JeuwFT0vxOZTdDsWHUAf3onL3oA7ugYJciElAkrugyo7CkXw4VgTBoY7XY+IhOs7xODoeYuKRYB2u/FycHPFP6JJqWJ7a/IDtx8WY2nXC1K6jp6V4NUopKD3ys8kP7kHl7YPQcCSpI5LYAVOPi6B18hm1vFJ2KD0GR/JRRwvgSAFqx1rUEcdjLAGOQiDG0UpwFAxxEBPvyN/J8OfNFVeM+Pu9+R2Lej4h4Pq7PC3F61AVx382+cG9jsdKIW06Ikkd4dJxmBI7OBWcVMQEkTEQGYN06PrL+ygF5aWOAuFogaOlkLUZ+9ECKM6HvkMwj/TvRVfhccaP+Pu9+e1b14PdjqlXf09L8SjKakXl7YHaWl0d3APlpUhiB2jTEel9KaZxN0JkS8NrYRGBFpHQIhJpl/JLXYcPYJ/7rqH380VcEdHH781vnfuJY1GPHzYrld2O2rsDtXklavsa6JiGRLZEOvfANHQCtGzt+cVOZgvYbJ7V4AW0iI/l4Kathubp1+a35+7DvjeLwAf/5mkpbkMpBTnZ2DevQG1dBeFRmHpdgumepx19bG/DbAGb8SGsfI2IhHgyDV7f79fmt86diWXUlc1+CkopBYcPOAy/ZSVYAjD1HIDptseRuERPyzs3FgvYrJ5W4XFcsb7fb82vSo5iW72E4Bf/52kpLkMVHUZtXoF9ywqorkJ6DsB8w/2O0Xhf6eZYAsCqa35H/H7d5zcE68IvMF88DImI8rQUQ1ElxagtK7FvXgElR5AeF2GedDu07ez5/ntjMOuaHyA8PpYygw/v8Evzq+oqrIu+IOiJ5nEopjpeitq22mH4/BykW39MGdciHdIQs9nT8pqG2QJWbf7giAhs1dVUnzhBoEFHuDtlfhHJAF4CzMCbSqlnTrv+AHArYAUKgVuUUvsNUegCbD8swtQhFVNSsqelNBpVWYHavha1eQXqQBZyQW9Mg8Yhqb0QS4Cn5RmH2QJ2G0rZHWsF/BQRITzesdAnpn07Q/I8r/lFxAy8CowEcoG1IjJHKbWjTrKNQLpSqkJE7gT+CXhlALyTkXoCfv07T0tpMKq6CpW50WH47G1IxzSk3xBMN9yPBAZ7Wp5LEJGfp/ss/mt+OBnOy43mBy4EspVSewBE5GNgAnDK/Eqp7+ukXwXcYIg6F2DfvAZMZkw9+nlailMoqxWVtQW1ZQXqp41IUiek1wBMk29HQlp4Wp57ONn0b04tmkZg9EIfZ8zfBsip8zwXOFeMq2nAN/VdEJHbgdsB2rUzpvRqKNa5n2C53LsX9Zyx+CaujWNqbuwNSHiUp+W5n1Nz/f59eIrRh3YaOuAnIjcA6cCQ+q4rpaYD0wHS09ONjUzgBPYDu7Hn7CXwkuHuvvV58bnFN+7EEqAH/ag1v5tr/oNA2zrPk2pf+wUiMgJ4DBiilKoyRp6xWOd+imXURCQg0NNSAB9ffONO9Co/wLHQ5+iBXMPyc8b8a4EUEemAw/RTgevqJhCRPsDrQIZSyjWHiTcRdawY29plXrOox36iHPv0v0JluW8uvnEnepUf4Ojz56zfaFh+5zW/UsoqIvcAC3BM9b2tlNouIk8B65RSc4DngBbAp7Vf3gNKqfGGqTQA68IvMF8y3HsW9ezZCUHBmH/7tG8uvnEneq4fqF3o4+4+v1JqHjDvtNeeqPN4hGGKXIBjUc+XBP3lFU9LOYVERENlhTa+M+hVfsDJ0X7jVvn5xTfPtnQ+ppQ0TImemWGol8gYKDniaRW+gSVAmx/jR/ubvfmV3e4IyW3woZtNDqPcIhIqyx3BLjXnxmzRm3uAsNiWVBw9ht2g+AbN3vz2TashMAhTWm/j8szcQs3vr8eeu7fReYjJBC2ioMzYcMzNEl3zA2C2WAiJiuR4UbEh+TV78zsW9Vxj2Ci6PWsb1leeQiKjoexY0zKLiNZNfycQswWla36g9tBOg+b6m7X57fuysB88gHnAMGPy270D63/+guX2h5DYBKg60aT8JDIGVapr/vOiB/xOYeRx3c3a/Na5M7FkTDJkl5t9bybWl/6MZdrvMfXoD0HBUFnZtEwjYqBU1/znRc/zn8LIEf9ma351pAjb+hVYRjR9uYF9fzbWF/+E5eb7Tx3dLcEhqKbW/BHRKN3sPyfqRDnqeIme56/FEcLbmJq/2QbzsC6YjfnSkUiLiCblY8/Zi/WFR7Hc+DtMfS75+UJQcJOb/UTGwOGc86fzM9SJ46jsLajMjZC3F9p3QfoO9rQsryA8wbj1/c3S/KryBNbFXxH0t/9rWj4H92P918OYr7sLU/qgX14Mj0btWI894ORJM404XSYiBnSfH6g1fNYW1K4NkLcPkrsi3Qcg429t9gFWG0KL+DgKsxs/y1SXZml+29L5mLr0xNQqqdF5qEMHqHn+IcxTbsN80dAzrptGTkJZTKjiw5C1FfvJY6dsNoiJO3XUlMTEO56fPIYqMhoxOUJrSUQ0dj/u89dv+EuQ8bdpw5+F8IR4jhfqmr9eHIt6ZhJwx8ONz+NwLjXPPYR58s2YL6l/5bKYTMjwSWe+90QFHC2oPYOu0PH74N7awqEQKkohuQuYTEh4JJQYM2frK6iK46jszY4m/aF9SHJXTD0uAW14pzBylV+zM799wwoIDcfUpWej3q8KDjlq/Ak3Yr50dIPfLyGhEJKMJCbXn39NDepoEZQWw9EiZOiERun0Jeo1fM+BMEEbvqE4+vzGjPY3O/Nb585scKQeVXEc+87N2LdvQOXnYh47FfOQsS7RJwEBSHxriG/tkvy9BVVRhsrajNq1EQ4f+NnwV97uNfEUfJGTNb9SqskL15qV+e17MlH5efX20euiaqqxZ+/Avm099h0bUbl7MXVOw9StH6bLrsDsw1F9PUm9hu91KVzZTRu+iShlB5uVABOYAyxUlpUREtG0maxmZX7r159gHjMZsfzyz1J2O+rAbuzb12PfvgF71g4ksR2m7v2wXD0NU+duSKD+cjaGU4bP3Aj5Jw0/CK5Ma3aGVzVVoBRYAn+xFVvZbY6NRzar4+e0x8pmdUQistb+Pj2NrcaxwetUunrystvAHAAWC1P/dBdmS9Ot22zMby/Kx7ZpNcHT7nc8L8jDvm2Dw/A7NiIRUZjS+mC+bDwBdz+BhPlJ5FsXYS8+hFr0CRQeRDqkYeo9CDo0P8PXxf7tx3D8qMOggcFgMteuPFSnjIk5wLEc2WxxbEgyBzgqI3Oda5YAx/tPpbFgsgSclua09CbzqWZ+vyuM+XuajfmtX32MKbUb1o9fx75tA8pag6lbX8y9Lybg+rsc8/Aa48jPgeNHkVuewBQW7mk17qH8GKZx0yCkBaqmGhHAbDk1detrNBvzi8XiONWlbUcCMq5CEtvreHguRLr2h0P7UAs/RE24zWcN0CCCwxzRl0LDm8UsRbMxf8CNd3tagl8hIjBsMurLN1BLZsOwq5p/YRsUCpXlnlZhGM12Y4/G9YjJjGnsTai8PaiNSz0tx+VIcBiqssLTMgxDm1/TJCQoGNP421Hrv0ft3uppOa4lWNf8Gs0vkIhoTOOnYf/2Y1R+M96lWNvnby5o82sMQRLaYRp+Dfav3kS5MS6hstagsrdg37EW1dSwauejmdX8zWbAT+N5pHNPpKQY+5fTMV19LxLkmmPDlbJD3l5U5gbUnq0Q2wZatkKtmY906on0GYq0iDT8vhIchr0Z1fza/BpDkb5D4Vgh9nnvYDJ4ClAdyXcYftcGCApGUvthmvoA0iLKcT19OGrzcuyzXkY693IUAmFNWwL7C3TNr9GcnV9OAX4OwyY3aQpQlZeisjY5DF9RhqT0wTTuZiT2zINMJaQFcvEYVM9LHYXApy8hKX2QPkOQUAMWIjWzPr82v8ZwTk4B2me+BBuXOloDDUDVVKP2bHUYPj/HsXx4wFho09mp480kNBwZMNZRCGxahn3mi5DaF+k5EFNtK6FR1Nb8Ruyo8wa0+TUuQYKCMU24DfsnL6EiWyKdepwzvbLbIDfb0azft8NxYvEF6UjGrxu9X0DCIpCBl6N6D0L9tA71xWvY4pIwpfaBdhcg5oZ9/SUgEEQcm22awR4GbX6Ny5CIGExXTMP+5euYWkQhCW1/cV0pBUV5qMz1qKxN0CIKSe2LaeAVSKhxG68kLBLpNxzVaxBq307sP62FlXORjj2Q1L5ITILzmQWHOfr92vwazbmRVj9PAZquuQ8Jj0aVHUXt2ojK3ADWauSCvpiuvAOJjnetFksg0rkXdO6FKj2CytqEfdGHENICSe2DdOiOBIWcO5OTg37h0S7V6g60+TUuxzEFWIR99msQEQXFh5HOPTENnQyt2yPi/uUmEhGD9LsM1Wco5O1G7dqIfd23SNtUJLUvtDqLrmY06KfNr3EL0ncYxLZBrNWOKL0N7G+7CjGZICkFSUpBVZajdm/FvuobsNYgKb2Rzr1/sWZAgkNRleX4/nCfk+YXkQzgJcAMvKmUeua060HAe0A/oBi4Rim1z1ipGl9GRJD2F3haxjmR4DCk28WotIugOM/RGvjyNYhtc2qQ0K9qfhExA68CI4FcYK2IzFFK7aiTbBpwVCnVWUSmAs8C17hCsEbjakTE0UqJbYO6cBRq/0+nBgmJiofo5hEYxpma/0IgWym1B0BEPgYmAHXNPwF4svbxLOAVERGllDJQq0bjdsQSiHTqCZ16okqPYN+5Bknp42lZhuDMSEsboO5Wrdza1+pNo5SyAiVAy9MzEpHbRWSdiKwrNOjUEY3GXUhEDOaLMjA1ZGrQi3HrMKtSarpSKl0plR4X1zyaThqNr+KM+Q8CdVdnJNW+Vm8aEbEAkTgG/jQajZfijPnXAiki0kFEAoGpwJzT0swBfl37+CrgO93f12i8m/MO+CmlrCJyD7AAx1Tf20qp7SLyFLBOKTUHeAt4X0SygSM4CgiNRuPFODXPr5SaB8w77bUn6jyuBK42VppGo3ElOoyXRuOnaPNrNH6KNr9G46eIpwblRaQQ2F/PpVigyM1yGorW2HS8XR80D43tlVL1LqrxmPnPhoisU0qle1rHudAam46364Pmr1E3+zUaP0WbX6PxU7zR/NM9LcAJtMam4+36oJlr9Lo+v0ajcQ/eWPNrNBo3oM2v0fgpHjO/iGSISKaIZIvIw/VcDxKRT2qvrxaRZC/U+ICI7BCRLSKyWETae5O+Oukmi4gSEbdPWzmjUUSm1H6O20Xkf96mUUTaicj3IrKx9n891s363haRAhHZdpbrIiIv1+rfIiJ9ncpYKeX2Hxy7A3cDHYFAYDOQdlqau4DXah9PBT7xQo3DgNDax3e6U6Mz+mrThQPLgFVAuhd+hinARiC69nm8F2qcDtxZ+zgN2OdmjYOBvsC2s1wfC3wDCHAxsNqZfD1V85+KC6iUqgZOxgWsywTg3drHs4Dh4t4D0s6rUSn1vVLqZCjXVTgCnXiNvlr+iiOgaqUbtZ3EGY23Aa8qpY4CKKUKvFCjAk4e9xsJ5LlRH0qpZTi2yp+NCcB7ysEqIEpEWp8vX0+Z37C4gC7EGY11mYaj9HUX59VX2/xrq5Sa60ZddXHmM0wFUkXkRxFZVRsm3p04o/FJ4AYRycWxtf237pHmNA39rgL60A5DEJEbgHRgiKe1nEQcx828ANzkYSnnw4Kj6T8UR8tpmYj0UEod86So07gWeEcp9S8RGYAjcE13pZTd08Kagqdqfl+IC+iMRkRkBPAYMF4pVeUmbXB+feFAd2CJiOzD0Rec4+ZBP2c+w1xgjlKqRim1F9iFozBwF85onAbMBFBKrQSCcWyo8Rac+q6egTsHLuoMUFiAPUAHfh5k6XZamrv55YDfTC/U2AfHYFGKN36Gp6VfgvsH/Jz5DDOAd2sfx+Jovrb0Mo3fADfVPu6Ko88vbv4skzn7gN84fjngt8apPN35B5wmeCyOUn438Fjta0/hqEHBUbp+CmQDa4COXqjxWyAf2FT7M8eb9J2W1u3md/IzFBzdkx3AVmCqF2pMA36sLRg2AaPcrO8j4BBQg6OlNA24A7ijzmf4aq3+rc7+n/XyXo3GT9Er/DQaP0WbX6PxU7T5NRo/RZtfo/FTtPk1Gj9Fm1+j8VO0+TUaP+X/Abem6TLSC0KwAAAAAElFTkSuQmCC\n"
          },
          "metadata": {
            "needs_background": "light"
          }
        }
      ],
      "source": [
        "plot(nodes_coordinates[resulting_traj])"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    },
    "colab": {
      "provenance": []
    },
    "accelerator": "GPU",
    "gpuClass": "standard"
  },
  "nbformat": 4,
  "nbformat_minor": 5
}