File size: 2,418 Bytes
c3bcf24
8df01d8
0f87960
8df01d8
 
0f87960
 
8df01d8
 
 
c3bcf24
 
8df01d8
 
c3bcf24
8df01d8
c3bcf24
0f87960
 
 
 
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
c3bcf24
8df01d8
 
0f87960
8df01d8
 
 
0f87960
8df01d8
 
0f87960
 
8df01d8
c3bcf24
8df01d8
c3bcf24
0f87960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3bcf24
 
8df01d8
c3bcf24
8df01d8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: cportoca/CS224S_Quechua_Project
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: CS224S_Quechua_Project
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS224S_Quechua_Project

This model is a fine-tuned version of [cportoca/CS224S_Quechua_Project](https://huggingface.co/cportoca/CS224S_Quechua_Project) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0264
- Wer: 0.6160

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 70
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4218        | 0.625 | 45   | 1.2929          | 0.8437 |
| 0.4233        | 1.25  | 90   | 1.3785          | 0.8580 |
| 0.4098        | 1.875 | 135  | 1.2656          | 0.8277 |
| 0.4212        | 2.5   | 180  | 1.1368          | 0.7781 |
| 0.3174        | 3.125 | 225  | 1.1210          | 0.8134 |
| 0.2819        | 3.75  | 270  | 1.0151          | 0.7221 |
| 0.2226        | 4.375 | 315  | 1.0450          | 0.7723 |
| 0.2152        | 5.0   | 360  | 1.0446          | 0.7100 |
| 0.2023        | 5.625 | 405  | 1.0544          | 0.7339 |
| 0.1547        | 6.25  | 450  | 1.0352          | 0.6932 |
| 0.1358        | 6.875 | 495  | 1.0490          | 0.6562 |
| 0.1229        | 7.5   | 540  | 1.0429          | 0.6500 |
| 0.079         | 8.125 | 585  | 0.9882          | 0.6532 |
| 0.0896        | 8.75  | 630  | 1.0109          | 0.6322 |
| 0.052         | 9.375 | 675  | 1.0006          | 0.6275 |
| 0.0515        | 10.0  | 720  | 1.0264          | 0.6160 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1