Add 1 files
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,348 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            tags:
         
     | 
| 3 | 
         
            +
            - fp8
         
     | 
| 4 | 
         
            +
            - vllm
         
     | 
| 5 | 
         
            +
            language:
         
     | 
| 6 | 
         
            +
            - en
         
     | 
| 7 | 
         
            +
            - de
         
     | 
| 8 | 
         
            +
            - fr
         
     | 
| 9 | 
         
            +
            - it
         
     | 
| 10 | 
         
            +
            - pt
         
     | 
| 11 | 
         
            +
            - hi
         
     | 
| 12 | 
         
            +
            - es
         
     | 
| 13 | 
         
            +
            - th
         
     | 
| 14 | 
         
            +
            pipeline_tag: text-generation
         
     | 
| 15 | 
         
            +
            license: llama3.1
         
     | 
| 16 | 
         
            +
            base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
         
     | 
| 17 | 
         
            +
            ---
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            # Meta-Llama-3.1-8B-Instruct-FP8
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            ## Model Overview
         
     | 
| 22 | 
         
            +
            - **Model Architecture:** Meta-Llama-3.1
         
     | 
| 23 | 
         
            +
              - **Input:** Text
         
     | 
| 24 | 
         
            +
              - **Output:** Text
         
     | 
| 25 | 
         
            +
            - **Model Optimizations:**
         
     | 
| 26 | 
         
            +
              - **Weight quantization:** FP8
         
     | 
| 27 | 
         
            +
              - **Activation quantization:** FP8
         
     | 
| 28 | 
         
            +
            - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
         
     | 
| 29 | 
         
            +
            - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
         
     | 
| 30 | 
         
            +
            - **Release Date:** 7/23/2024
         
     | 
| 31 | 
         
            +
            - **Version:** 1.0
         
     | 
| 32 | 
         
            +
            - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
         
     | 
| 33 | 
         
            +
            - **Model Developers:** Neural Magic
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
         
     | 
| 36 | 
         
            +
            It achieves an average score of 73.44 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.79.
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            ### Model Optimizations
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to FP8 data type, ready for inference with vLLM built from source.
         
     | 
| 41 | 
         
            +
            This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
         
     | 
| 44 | 
         
            +
            [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization with 512 sequences of UltraChat.
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            ## Deployment
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            ### Use with vLLM
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            ```python
         
     | 
| 53 | 
         
            +
            from vllm import LLM, SamplingParams
         
     | 
| 54 | 
         
            +
            from transformers import AutoTokenizer
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(model_id)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            messages = [
         
     | 
| 63 | 
         
            +
                {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
         
     | 
| 64 | 
         
            +
                {"role": "user", "content": "Who are you?"},
         
     | 
| 65 | 
         
            +
            ]
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            prompts = tokenizer.apply_chat_template(messages, tokenize=False)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            llm = LLM(model=model_id)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            outputs = llm.generate(prompts, sampling_params)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            generated_text = outputs[0].outputs[0].text
         
     | 
| 74 | 
         
            +
            print(generated_text)
         
     | 
| 75 | 
         
            +
            ```
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            ## Creation
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            ```python
         
     | 
| 84 | 
         
            +
            import torch
         
     | 
| 85 | 
         
            +
            from datasets import load_dataset
         
     | 
| 86 | 
         
            +
            from transformers import AutoTokenizer
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
         
     | 
| 89 | 
         
            +
            from llmcompressor.transformers.compression.helpers import (
         
     | 
| 90 | 
         
            +
                calculate_offload_device_map,
         
     | 
| 91 | 
         
            +
                custom_offload_device_map,
         
     | 
| 92 | 
         
            +
            )
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            recipe = """
         
     | 
| 95 | 
         
            +
            quant_stage:
         
     | 
| 96 | 
         
            +
                quant_modifiers:
         
     | 
| 97 | 
         
            +
                    QuantizationModifier:
         
     | 
| 98 | 
         
            +
                        ignore: ["lm_head"]
         
     | 
| 99 | 
         
            +
                        config_groups:
         
     | 
| 100 | 
         
            +
                            group_0:
         
     | 
| 101 | 
         
            +
                                weights:
         
     | 
| 102 | 
         
            +
                                    num_bits: 8
         
     | 
| 103 | 
         
            +
                                    type: float
         
     | 
| 104 | 
         
            +
                                    strategy: tensor
         
     | 
| 105 | 
         
            +
                                    dynamic: false
         
     | 
| 106 | 
         
            +
                                    symmetric: true
         
     | 
| 107 | 
         
            +
                                input_activations:
         
     | 
| 108 | 
         
            +
                                    num_bits: 8
         
     | 
| 109 | 
         
            +
                                    type: float
         
     | 
| 110 | 
         
            +
                                    strategy: tensor
         
     | 
| 111 | 
         
            +
                                    dynamic: false
         
     | 
| 112 | 
         
            +
                                    symmetric: true
         
     | 
| 113 | 
         
            +
                                targets: ["Linear"]
         
     | 
| 114 | 
         
            +
            """
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            model_stub = "meta-llama/Meta-Llama-3.1-8B-Instruct"
         
     | 
| 117 | 
         
            +
            model_name = model_stub.split("/")[-1]
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            device_map = calculate_offload_device_map(
         
     | 
| 120 | 
         
            +
                model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
         
     | 
| 121 | 
         
            +
            )
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            model = SparseAutoModelForCausalLM.from_pretrained(
         
     | 
| 124 | 
         
            +
                model_stub, torch_dtype="auto", device_map=device_map
         
     | 
| 125 | 
         
            +
            )
         
     | 
| 126 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(model_stub)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            output_dir = f"./{model_name}-FP8"
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            DATASET_ID = "HuggingFaceH4/ultrachat_200k"
         
     | 
| 131 | 
         
            +
            DATASET_SPLIT = "train_sft"
         
     | 
| 132 | 
         
            +
            NUM_CALIBRATION_SAMPLES = 512
         
     | 
| 133 | 
         
            +
            MAX_SEQUENCE_LENGTH = 4096
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
         
     | 
| 136 | 
         
            +
            ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            def preprocess(example):
         
     | 
| 139 | 
         
            +
                return {
         
     | 
| 140 | 
         
            +
                    "text": tokenizer.apply_chat_template(
         
     | 
| 141 | 
         
            +
                        example["messages"],
         
     | 
| 142 | 
         
            +
                        tokenize=False,
         
     | 
| 143 | 
         
            +
                    )
         
     | 
| 144 | 
         
            +
                }
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            ds = ds.map(preprocess)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
            def tokenize(sample):
         
     | 
| 149 | 
         
            +
                return tokenizer(
         
     | 
| 150 | 
         
            +
                    sample["text"],
         
     | 
| 151 | 
         
            +
                    padding=False,
         
     | 
| 152 | 
         
            +
                    max_length=MAX_SEQUENCE_LENGTH,
         
     | 
| 153 | 
         
            +
                    truncation=True,
         
     | 
| 154 | 
         
            +
                    add_special_tokens=False,
         
     | 
| 155 | 
         
            +
                )
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            ds = ds.map(tokenize, remove_columns=ds.column_names)
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            oneshot(
         
     | 
| 160 | 
         
            +
                model=model,
         
     | 
| 161 | 
         
            +
                output_dir=output_dir,
         
     | 
| 162 | 
         
            +
                dataset=ds,
         
     | 
| 163 | 
         
            +
                recipe=recipe,
         
     | 
| 164 | 
         
            +
                max_seq_length=MAX_SEQUENCE_LENGTH,
         
     | 
| 165 | 
         
            +
                num_calibration_samples=NUM_CALIBRATION_SAMPLES,
         
     | 
| 166 | 
         
            +
                save_compressed=True,
         
     | 
| 167 | 
         
            +
            )
         
     | 
| 168 | 
         
            +
            ```
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            ## Evaluation
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
         
     | 
| 173 | 
         
            +
            Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
         
     | 
| 174 | 
         
            +
            This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
            ### Accuracy
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            #### Open LLM Leaderboard evaluation scores
         
     | 
| 179 | 
         
            +
            <table>
         
     | 
| 180 | 
         
            +
              <tr>
         
     | 
| 181 | 
         
            +
               <td><strong>Benchmark</strong>
         
     | 
| 182 | 
         
            +
               </td>
         
     | 
| 183 | 
         
            +
               <td><strong>Meta-Llama-3.1-8B-Instruct </strong>
         
     | 
| 184 | 
         
            +
               </td>
         
     | 
| 185 | 
         
            +
               <td><strong>Meta-Llama-3.1-8B-Instruct-FP8(this model)</strong>
         
     | 
| 186 | 
         
            +
               </td>
         
     | 
| 187 | 
         
            +
               <td><strong>Recovery</strong>
         
     | 
| 188 | 
         
            +
               </td>
         
     | 
| 189 | 
         
            +
              </tr>
         
     | 
| 190 | 
         
            +
              <tr>
         
     | 
| 191 | 
         
            +
               <td>MMLU (5-shot)
         
     | 
| 192 | 
         
            +
               </td>
         
     | 
| 193 | 
         
            +
               <td>67.95
         
     | 
| 194 | 
         
            +
               </td>
         
     | 
| 195 | 
         
            +
               <td>67.97
         
     | 
| 196 | 
         
            +
               </td>
         
     | 
| 197 | 
         
            +
               <td>100.0%
         
     | 
| 198 | 
         
            +
               </td>
         
     | 
| 199 | 
         
            +
              </tr>
         
     | 
| 200 | 
         
            +
              <tr>
         
     | 
| 201 | 
         
            +
               <td>MMLU-cot (0-shot)
         
     | 
| 202 | 
         
            +
               </td>
         
     | 
| 203 | 
         
            +
               <td>71.24
         
     | 
| 204 | 
         
            +
               </td>
         
     | 
| 205 | 
         
            +
               <td>71.12
         
     | 
| 206 | 
         
            +
               </td>
         
     | 
| 207 | 
         
            +
               <td>99.83%
         
     | 
| 208 | 
         
            +
               </td>
         
     | 
| 209 | 
         
            +
              </tr>
         
     | 
| 210 | 
         
            +
              <tr>
         
     | 
| 211 | 
         
            +
               <td>ARC Challenge (0-shot)
         
     | 
| 212 | 
         
            +
               </td>
         
     | 
| 213 | 
         
            +
               <td>82.00
         
     | 
| 214 | 
         
            +
               </td>
         
     | 
| 215 | 
         
            +
               <td>81.66
         
     | 
| 216 | 
         
            +
               </td>
         
     | 
| 217 | 
         
            +
               <td>99.59%
         
     | 
| 218 | 
         
            +
               </td>
         
     | 
| 219 | 
         
            +
              </tr>
         
     | 
| 220 | 
         
            +
              <tr>
         
     | 
| 221 | 
         
            +
               <td>GSM-8K-cot (8-shot, strict-match)
         
     | 
| 222 | 
         
            +
               </td>
         
     | 
| 223 | 
         
            +
               <td>81.96
         
     | 
| 224 | 
         
            +
               </td>
         
     | 
| 225 | 
         
            +
               <td>81.12
         
     | 
| 226 | 
         
            +
               </td>
         
     | 
| 227 | 
         
            +
               <td>98.98%
         
     | 
| 228 | 
         
            +
               </td>
         
     | 
| 229 | 
         
            +
              </tr>
         
     | 
| 230 | 
         
            +
              <tr>
         
     | 
| 231 | 
         
            +
               <td>Hellaswag (10-shot)
         
     | 
| 232 | 
         
            +
               </td>
         
     | 
| 233 | 
         
            +
               <td>80.46
         
     | 
| 234 | 
         
            +
               </td>
         
     | 
| 235 | 
         
            +
               <td>80.4
         
     | 
| 236 | 
         
            +
               </td>
         
     | 
| 237 | 
         
            +
               <td>99.93%
         
     | 
| 238 | 
         
            +
               </td>
         
     | 
| 239 | 
         
            +
              </tr>
         
     | 
| 240 | 
         
            +
              <tr>
         
     | 
| 241 | 
         
            +
               <td>Winogrande (5-shot)
         
     | 
| 242 | 
         
            +
               </td>
         
     | 
| 243 | 
         
            +
               <td>78.45
         
     | 
| 244 | 
         
            +
               </td>
         
     | 
| 245 | 
         
            +
               <td>77.90
         
     | 
| 246 | 
         
            +
               </td>
         
     | 
| 247 | 
         
            +
               <td>99.30%
         
     | 
| 248 | 
         
            +
               </td>
         
     | 
| 249 | 
         
            +
              </tr>
         
     | 
| 250 | 
         
            +
              <tr>
         
     | 
| 251 | 
         
            +
               <td>TruthfulQA (0-shot, mc2)
         
     | 
| 252 | 
         
            +
               </td>
         
     | 
| 253 | 
         
            +
               <td>54.50
         
     | 
| 254 | 
         
            +
               </td>
         
     | 
| 255 | 
         
            +
               <td>53.92
         
     | 
| 256 | 
         
            +
               </td>
         
     | 
| 257 | 
         
            +
               <td>98.94%
         
     | 
| 258 | 
         
            +
               </td>
         
     | 
| 259 | 
         
            +
              </tr>
         
     | 
| 260 | 
         
            +
              <tr>
         
     | 
| 261 | 
         
            +
               <td><strong>Average</strong>
         
     | 
| 262 | 
         
            +
               </td>
         
     | 
| 263 | 
         
            +
               <td><strong>73.79</strong>
         
     | 
| 264 | 
         
            +
               </td>
         
     | 
| 265 | 
         
            +
               <td><strong>73.44</strong>
         
     | 
| 266 | 
         
            +
               </td>
         
     | 
| 267 | 
         
            +
               <td><strong>99.52%</strong>
         
     | 
| 268 | 
         
            +
               </td>
         
     | 
| 269 | 
         
            +
              </tr>
         
     | 
| 270 | 
         
            +
            </table>
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
            ### Reproduction
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
            The results were obtained using the following commands:
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
            #### MMLU
         
     | 
| 277 | 
         
            +
            ```
         
     | 
| 278 | 
         
            +
            lm_eval \
         
     | 
| 279 | 
         
            +
              --model vllm \
         
     | 
| 280 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 281 | 
         
            +
              --tasks mmlu \
         
     | 
| 282 | 
         
            +
              --num_fewshot 5 \
         
     | 
| 283 | 
         
            +
              --batch_size auto
         
     | 
| 284 | 
         
            +
            ```
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
            #### MMLU-cot
         
     | 
| 287 | 
         
            +
            ```
         
     | 
| 288 | 
         
            +
            lm_eval \
         
     | 
| 289 | 
         
            +
              --model vllm \
         
     | 
| 290 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 291 | 
         
            +
              --tasks mmlu_cot_0shot_llama_3.1_instruct \
         
     | 
| 292 | 
         
            +
              --apply_chat_template \
         
     | 
| 293 | 
         
            +
              --num_fewshot 0 \
         
     | 
| 294 | 
         
            +
              --batch_size auto
         
     | 
| 295 | 
         
            +
            ```
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
            #### ARC-Challenge
         
     | 
| 298 | 
         
            +
            ```
         
     | 
| 299 | 
         
            +
            lm_eval \
         
     | 
| 300 | 
         
            +
              --model vllm \
         
     | 
| 301 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 302 | 
         
            +
              --tasks arc_challenge_llama_3.1_instruct \
         
     | 
| 303 | 
         
            +
              --apply_chat_template \
         
     | 
| 304 | 
         
            +
              --num_fewshot 0 \
         
     | 
| 305 | 
         
            +
              --batch_size auto
         
     | 
| 306 | 
         
            +
            ```
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
            #### GSM-8K
         
     | 
| 309 | 
         
            +
            ```
         
     | 
| 310 | 
         
            +
            lm_eval \
         
     | 
| 311 | 
         
            +
              --model vllm \
         
     | 
| 312 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 313 | 
         
            +
              --tasks gsm8k_cot_llama_3.1_instruct \
         
     | 
| 314 | 
         
            +
              --apply_chat_template \
         
     | 
| 315 | 
         
            +
              --fewshot_as_multiturn \
         
     | 
| 316 | 
         
            +
              --num_fewshot 8 \
         
     | 
| 317 | 
         
            +
              --batch_size auto
         
     | 
| 318 | 
         
            +
            ```
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
            #### Hellaswag
         
     | 
| 321 | 
         
            +
            ```
         
     | 
| 322 | 
         
            +
            lm_eval \
         
     | 
| 323 | 
         
            +
              --model vllm \
         
     | 
| 324 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 325 | 
         
            +
              --tasks hellaswag \
         
     | 
| 326 | 
         
            +
              --num_fewshot 10 \
         
     | 
| 327 | 
         
            +
              --batch_size auto
         
     | 
| 328 | 
         
            +
            ```
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
            #### Winogrande
         
     | 
| 331 | 
         
            +
            ```
         
     | 
| 332 | 
         
            +
            lm_eval \
         
     | 
| 333 | 
         
            +
              --model vllm \
         
     | 
| 334 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 335 | 
         
            +
              --tasks winogrande \
         
     | 
| 336 | 
         
            +
              --num_fewshot 5 \
         
     | 
| 337 | 
         
            +
              --batch_size auto
         
     | 
| 338 | 
         
            +
            ```
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
            #### TruthfulQA
         
     | 
| 341 | 
         
            +
            ```
         
     | 
| 342 | 
         
            +
            lm_eval \
         
     | 
| 343 | 
         
            +
              --model vllm \
         
     | 
| 344 | 
         
            +
              --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
         
     | 
| 345 | 
         
            +
              --tasks truthfulqa \
         
     | 
| 346 | 
         
            +
              --num_fewshot 0 \
         
     | 
| 347 | 
         
            +
              --batch_size auto
         
     | 
| 348 | 
         
            +
            ```
         
     |