--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ru-v3 results: [] --- # whisper-small-ru-v3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1974 - Wer: 16.5586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2389 | 0.2413 | 200 | 0.2515 | 22.1606 | | 0.2039 | 0.4825 | 400 | 0.2257 | 18.2687 | | 0.1946 | 0.7238 | 600 | 0.2135 | 17.4667 | | 0.1775 | 0.9650 | 800 | 0.2001 | 16.7119 | | 0.1037 | 1.2063 | 1000 | 0.1974 | 16.5586 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.1.0+cu118 - Datasets 3.3.1 - Tokenizers 0.21.0