File size: 5,335 Bytes
a37ced9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
from transformers import PreTrainedModel
from .heads import ArcMarginProduct, ElasticArcFace, ArcFaceSubCenterDynamic
from .configuration_miewid import MiewIdNetConfig
def weights_init_kaiming(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out')
nn.init.constant_(m.bias, 0.0)
elif classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif classname.find('BatchNorm') != -1:
if m.affine:
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0.0)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
nn.init.normal_(m.weight, std=0.001)
if m.bias:
nn.init.constant_(m.bias, 0.0)
class GeM(nn.Module):
def __init__(self, p=3, eps=1e-6):
super(GeM, self).__init__()
self.p = nn.Parameter(torch.ones(1)*p)
self.eps = eps
def forward(self, x):
return self.gem(x, p=self.p, eps=self.eps)
def gem(self, x, p=3, eps=1e-6):
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p)
def __repr__(self):
return self.__class__.__name__ + \
'(' + 'p=' + '{:.4f}'.format(self.p.data.tolist()[0]) + \
', ' + 'eps=' + str(self.eps) + ')'
class MiewIdNet(PreTrainedModel):
config_class = MiewIdNetConfig
def __init__(self, config):
"""
"""
super(MiewIdNet, self).__init__(config)
print('Building Model Backbone for {} model'.format(config.model_name))
print('config.model_name', config.model_name)
n_classes=config.n_classes
model_name=config.model_name
use_fc=False
fc_dim=512
dropout=0.0
loss_module=config.loss_module
s=30.0
margin=0.50
ls_eps=0.0
theta_zero=0.785
pretrained=True
margins=config.k
k=config.k
print('model_name', model_name)
self.backbone = timm.create_model(model_name, pretrained=pretrained, num_classes=0)
final_in_features = 2152#self.backbone.classifier.in_features
print('final_in_features', final_in_features)
# self.backbone.classifier = nn.Identity()
self.backbone.global_pool = GeM()#nn.Identity()
# self.pooling = GeM()
self.bn = nn.BatchNorm1d(final_in_features)
self.use_fc = use_fc
if use_fc:
self.dropout = nn.Dropout(p=dropout)
self.bn = nn.BatchNorm1d(fc_dim)
self.bn.bias.requires_grad_(False)
self.fc = nn.Linear(final_in_features, n_classes, bias = False)
self.bn.apply(weights_init_kaiming)
self.fc.apply(weights_init_classifier)
final_in_features = fc_dim
self.loss_module = loss_module
if loss_module == 'arcface':
self.final = ElasticArcFace(final_in_features, n_classes,
s=s, m=margin)
elif loss_module == 'arcface_subcenter_dynamic':
if margins is None:
margins = [0.3] * n_classes
print(final_in_features, n_classes)
self.final = ArcFaceSubCenterDynamic(
embedding_dim=final_in_features,
output_classes=n_classes,
margins=margins,
s=s,
k=k )
# elif loss_module == 'cosface':
# self.final = AddMarginProduct(final_in_features, n_classes, s=s, m=margin)
# elif loss_module == 'adacos':
# self.final = AdaCos(final_in_features, n_classes, m=margin, theta_zero=theta_zero)
else:
self.final = nn.Linear(final_in_features, n_classes)
def _init_params(self):
nn.init.xavier_normal_(self.fc.weight)
nn.init.constant_(self.fc.bias, 0)
nn.init.constant_(self.bn.weight, 1)
nn.init.constant_(self.bn.bias, 0)
def forward(self, x, label=None):
feature = self.extract_feat(x)
return feature
# if not self.training:
# return feature
# else:
# assert label is not None
# if self.loss_module in ('arcface', 'arcface_subcenter_dynamic'):
# logits = self.final(feature, label)
# else:
# logits = self.final(feature)
# return logits
def extract_feat(self, x):
batch_size = x.shape[0]
x = self.backbone(x).view(batch_size, -1)
# x = self.pooling(x).view(batch_size, -1)
x = self.bn(x)
if self.use_fc:
x1 = self.dropout(x)
x1 = self.bn(x1)
x1 = self.fc(x1)
return x
def extract_logits(self, x, label=None):
feature = self.extract_feat(x)
assert label is not None
if self.loss_module in ('arcface', 'arcface_subcenter_dynamic'):
logits = self.final(feature, label)
else:
logits = self.final(feature)
return logits |