--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-hf-rslora results: [] datasets: - compulsi0n/heart-failure-audio pipeline_tag: automatic-speech-recognition --- # whisper-hf-rslora This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on compulsion/heart-failure-audio. It achieves the following results on the evaluation set: - Loss: 0.6919 - Wer: 0.2424 ## Model description A PEFT rank-stablized LoRA adapter of whisper-large-v3-turbo finetuned on heart failure audio data that is conversational, longitudinal, and focused on chronic illness management and care coordination in a community-based healthcare setting. ## Intended uses & limitations To be used in ASR tasks specifically in the heart failure domain. ## Benchmark (base whisper-large-v3-turbo vs. finetuned rank-stablized LoRA adapter) Normalized for PHI redactions and throught Transformer's BasicTextNormalizer. | Model | Raw WER (%) | Normalised WER (%) | | :------: | :---------: | :----------------: | | Baseline | 35.00 | 26.71 | | rsLoRA | 26.18 | 20.71 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3062 | 1.0 | 92 | 1.1343 | 0.2388 | | 1.0317 | 2.0 | 184 | 0.7145 | 0.2620 | | 0.6833 | 3.0 | 276 | 0.6606 | 0.2105 | | 0.5934 | 4.0 | 368 | 0.6292 | 0.2122 | | 0.5104 | 5.0 | 460 | 0.6347 | 0.2521 | | 0.4392 | 6.0 | 552 | 0.6444 | 0.2729 | | 0.3653 | 7.0 | 644 | 0.6701 | 0.2198 | | 0.3178 | 8.0 | 736 | 0.6919 | 0.2424 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1