codersan commited on
Commit
ac0ece1
·
verified ·
1 Parent(s): cad15fe

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e59d9b1394e48dbb99fe0408b849d0b83acb80394e0975e4d3de3186f7bcbb1
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:109673
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: اخترشناس معروف واقعی کیست؟
12
+ sentences:
13
+ - چرا دولت هند به طور ناگهانی از شیطنت 500 و 1000 روپیه خبر داد؟
14
+ - اخترشناس فوق العاده استاد کیست؟
15
+ - چگونه باید برای مکان های دانشگاه آماده شد؟
16
+ - source_sentence: چگونه انگلیسی روان صحبت کنم؟
17
+ sentences:
18
+ - کدام هدفون/هدفون بهترین زیر 1000 پوند است؟
19
+ - آهنگ انگلیسی مورد علاقه شما چیست؟
20
+ - چگونه می توانم انگلیسی خود را بهبود ببخشم؟
21
+ - source_sentence: چگونه می توانم یک ویدیو را از هر وب سایت بارگیری کنم؟
22
+ sentences:
23
+ - اهداف شما برای سال 2017 چیست؟
24
+ - آیا نمونه و/یا شواهدی از سفر به زمان وجود داشت؟
25
+ - چگونه می توانم فیلم ها را از چندین وب سایت بارگیری کنم؟
26
+ - source_sentence: 'دانشمند بزرگ چه کسی بود: آقا اسحاق نیوتن یا آلبرت انیشتین؟'
27
+ sentences:
28
+ - چگونه می توانم این دنیا را به مکانی بهتر تبدیل کنم؟
29
+ - برای خلاص شدن از زخم های آبله مرغان چه کاری باید انجام دهم؟
30
+ - چه کسی فیزیکدان نهایی است که روی چهره زمین زندگی کرده است؟آیا ایزاک نیوتن یا آلبرت
31
+ انیشتین است؟
32
+ - source_sentence: پیش نیازهای ریاضی قبل از شروع به درک قضایای ناقص بودن گودل چیست؟
33
+ sentences:
34
+ - آیا تلفن های همراه باعث سرطان می شوند؟
35
+ - به نظر شما ما می توانیم برای بهبود بهترین سیستم آموزش ایالات متحده انجام دهیم؟
36
+ - پیش نیازهای ریاضی برای درک صحیح از قضایای ناقص گودل چیست؟
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ ---
40
+
41
+ # SentenceTransformer based on sentence-transformers/LaBSE
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
50
+ - **Maximum Sequence Length:** 256 tokens
51
+ - **Output Dimensionality:** 768 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
70
+ (3): Normalize()
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("codersan/FaLaBSE-v12-phase1-Quora")
90
+ # Run inference
91
+ sentences = [
92
+ 'پیش نیازهای ریاضی قبل از شروع به درک قضایای ناقص بودن گودل چیست؟',
93
+ 'پیش نیازهای ریاضی برای درک صحیح از قضایای ناقص گودل چیست؟',
94
+ 'به نظر شما ما می توانیم برای بهبود بهترین سیستم آموزش ایالات متحده انجام دهیم؟',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 109,673 training samples
150
+ * Columns: <code>anchor</code> and <code>positive</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | anchor | positive |
153
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string |
155
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.91 tokens</li><li>max: 45 tokens</li></ul> |
156
+ * Samples:
157
+ | anchor | positive |
158
+ |:-----------------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | <code>چگونه می توانم ترافیک کشورهای خاص در سایت خود را حذف کنم؟</code> | <code>چگونه می توانید ترافیک یک کشور خاص را به سمت وب سایت خود مسدود کنید؟</code> |
160
+ | <code>آیا پیوستن به مرکز مربیگری برای پاک کردن JEE ضروری است؟</code> | <code>آیا مربیگری برای موفقیت در JEE Advanced لازم است؟</code> |
161
+ | <code>چند نکته برای مرحله 1 USMLE چیست؟</code> | <code>چقدر باید برای مرحله 1 USMLE مطالعه کنم؟</code> |
162
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
+ ```json
164
+ {
165
+ "scale": 20.0,
166
+ "similarity_fct": "cos_sim"
167
+ }
168
+ ```
169
+
170
+ ### Training Hyperparameters
171
+ #### Non-Default Hyperparameters
172
+
173
+ - `per_device_train_batch_size`: 32
174
+ - `learning_rate`: 2e-05
175
+ - `weight_decay`: 0.01
176
+ - `num_train_epochs`: 1
177
+ - `batch_sampler`: no_duplicates
178
+
179
+ #### All Hyperparameters
180
+ <details><summary>Click to expand</summary>
181
+
182
+ - `overwrite_output_dir`: False
183
+ - `do_predict`: False
184
+ - `eval_strategy`: no
185
+ - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 32
187
+ - `per_device_eval_batch_size`: 8
188
+ - `per_gpu_train_batch_size`: None
189
+ - `per_gpu_eval_batch_size`: None
190
+ - `gradient_accumulation_steps`: 1
191
+ - `eval_accumulation_steps`: None
192
+ - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 2e-05
194
+ - `weight_decay`: 0.01
195
+ - `adam_beta1`: 0.9
196
+ - `adam_beta2`: 0.999
197
+ - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1.0
199
+ - `num_train_epochs`: 1
200
+ - `max_steps`: -1
201
+ - `lr_scheduler_type`: linear
202
+ - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
+ - `warmup_steps`: 0
205
+ - `log_level`: passive
206
+ - `log_level_replica`: warning
207
+ - `log_on_each_node`: True
208
+ - `logging_nan_inf_filter`: True
209
+ - `save_safetensors`: True
210
+ - `save_on_each_node`: False
211
+ - `save_only_model`: False
212
+ - `restore_callback_states_from_checkpoint`: False
213
+ - `no_cuda`: False
214
+ - `use_cpu`: False
215
+ - `use_mps_device`: False
216
+ - `seed`: 42
217
+ - `data_seed`: None
218
+ - `jit_mode_eval`: False
219
+ - `use_ipex`: False
220
+ - `bf16`: False
221
+ - `fp16`: False
222
+ - `fp16_opt_level`: O1
223
+ - `half_precision_backend`: auto
224
+ - `bf16_full_eval`: False
225
+ - `fp16_full_eval`: False
226
+ - `tf32`: None
227
+ - `local_rank`: 0
228
+ - `ddp_backend`: None
229
+ - `tpu_num_cores`: None
230
+ - `tpu_metrics_debug`: False
231
+ - `debug`: []
232
+ - `dataloader_drop_last`: False
233
+ - `dataloader_num_workers`: 0
234
+ - `dataloader_prefetch_factor`: None
235
+ - `past_index`: -1
236
+ - `disable_tqdm`: False
237
+ - `remove_unused_columns`: True
238
+ - `label_names`: None
239
+ - `load_best_model_at_end`: False
240
+ - `ignore_data_skip`: False
241
+ - `fsdp`: []
242
+ - `fsdp_min_num_params`: 0
243
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
244
+ - `fsdp_transformer_layer_cls_to_wrap`: None
245
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
246
+ - `deepspeed`: None
247
+ - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch
249
+ - `optim_args`: None
250
+ - `adafactor`: False
251
+ - `group_by_length`: False
252
+ - `length_column_name`: length
253
+ - `ddp_find_unused_parameters`: None
254
+ - `ddp_bucket_cap_mb`: None
255
+ - `ddp_broadcast_buffers`: False
256
+ - `dataloader_pin_memory`: True
257
+ - `dataloader_persistent_workers`: False
258
+ - `skip_memory_metrics`: True
259
+ - `use_legacy_prediction_loop`: False
260
+ - `push_to_hub`: False
261
+ - `resume_from_checkpoint`: None
262
+ - `hub_model_id`: None
263
+ - `hub_strategy`: every_save
264
+ - `hub_private_repo`: None
265
+ - `hub_always_push`: False
266
+ - `gradient_checkpointing`: False
267
+ - `gradient_checkpointing_kwargs`: None
268
+ - `include_inputs_for_metrics`: False
269
+ - `include_for_metrics`: []
270
+ - `eval_do_concat_batches`: True
271
+ - `fp16_backend`: auto
272
+ - `push_to_hub_model_id`: None
273
+ - `push_to_hub_organization`: None
274
+ - `mp_parameters`:
275
+ - `auto_find_batch_size`: False
276
+ - `full_determinism`: False
277
+ - `torchdynamo`: None
278
+ - `ray_scope`: last
279
+ - `ddp_timeout`: 1800
280
+ - `torch_compile`: False
281
+ - `torch_compile_backend`: None
282
+ - `torch_compile_mode`: None
283
+ - `dispatch_batches`: None
284
+ - `split_batches`: None
285
+ - `include_tokens_per_second`: False
286
+ - `include_num_input_tokens_seen`: False
287
+ - `neftune_noise_alpha`: None
288
+ - `optim_target_modules`: None
289
+ - `batch_eval_metrics`: False
290
+ - `eval_on_start`: False
291
+ - `use_liger_kernel`: False
292
+ - `eval_use_gather_object`: False
293
+ - `average_tokens_across_devices`: False
294
+ - `prompts`: None
295
+ - `batch_sampler`: no_duplicates
296
+ - `multi_dataset_batch_sampler`: proportional
297
+
298
+ </details>
299
+
300
+ ### Training Logs
301
+ | Epoch | Step | Training Loss |
302
+ |:------:|:----:|:-------------:|
303
+ | 0.0583 | 100 | 0.0969 |
304
+ | 0.1167 | 200 | 0.0785 |
305
+ | 0.1750 | 300 | 0.091 |
306
+ | 0.2334 | 400 | 0.0721 |
307
+ | 0.2917 | 500 | 0.0756 |
308
+ | 0.3501 | 600 | 0.0771 |
309
+ | 0.4084 | 700 | 0.0681 |
310
+ | 0.4667 | 800 | 0.0646 |
311
+ | 0.5251 | 900 | 0.0633 |
312
+ | 0.5834 | 1000 | 0.0754 |
313
+ | 0.6418 | 1100 | 0.0622 |
314
+ | 0.7001 | 1200 | 0.0649 |
315
+ | 0.7585 | 1300 | 0.0638 |
316
+ | 0.8168 | 1400 | 0.062 |
317
+ | 0.8751 | 1500 | 0.0713 |
318
+ | 0.9335 | 1600 | 0.0621 |
319
+ | 0.9918 | 1700 | 0.0644 |
320
+
321
+
322
+ ### Framework Versions
323
+ - Python: 3.10.12
324
+ - Sentence Transformers: 3.3.1
325
+ - Transformers: 4.47.0
326
+ - PyTorch: 2.5.1+cu121
327
+ - Accelerate: 1.2.1
328
+ - Datasets: 3.3.1
329
+ - Tokenizers: 0.21.0
330
+
331
+ ## Citation
332
+
333
+ ### BibTeX
334
+
335
+ #### Sentence Transformers
336
+ ```bibtex
337
+ @inproceedings{reimers-2019-sentence-bert,
338
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
339
+ author = "Reimers, Nils and Gurevych, Iryna",
340
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
341
+ month = "11",
342
+ year = "2019",
343
+ publisher = "Association for Computational Linguistics",
344
+ url = "https://arxiv.org/abs/1908.10084",
345
+ }
346
+ ```
347
+
348
+ #### MultipleNegativesRankingLoss
349
+ ```bibtex
350
+ @misc{henderson2017efficient,
351
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
352
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
353
+ year={2017},
354
+ eprint={1705.00652},
355
+ archivePrefix={arXiv},
356
+ primaryClass={cs.CL}
357
+ }
358
+ ```
359
+
360
+ <!--
361
+ ## Glossary
362
+
363
+ *Clearly define terms in order to be accessible across audiences.*
364
+ -->
365
+
366
+ <!--
367
+ ## Model Card Authors
368
+
369
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Contact
374
+
375
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
376
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.47.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcb6b5b20ef3243f1a761cf190a7d2b1b8ec4d4a02e748720e3721c1fcc798ef
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff