cnmoro commited on
Commit
a729212
·
verified ·
1 Parent(s): c668517

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +100 -0
  2. config.json +13 -0
  3. model.safetensors +3 -0
  4. modules.json +14 -0
  5. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-embedding-30m-english
3
+ language:
4
+ - en
5
+ library_name: model2vec
6
+ license: mit
7
+ model_name: granite-embedding-english
8
+ tags:
9
+ - embeddings
10
+ - static-embeddings
11
+ - sentence-transformers
12
+ ---
13
+
14
+ # granite-embedding-english Model Card
15
+
16
+ This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the ibm-granite/granite-embedding-30m-english(https://huggingface.co/ibm-granite/granite-embedding-30m-english) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
17
+
18
+
19
+ ## Installation
20
+
21
+ Install model2vec using pip:
22
+ ```
23
+ pip install model2vec
24
+ ```
25
+
26
+ ## Usage
27
+
28
+ ### Using Model2Vec
29
+
30
+ The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
31
+
32
+ Load this model using the `from_pretrained` method:
33
+ ```python
34
+ from model2vec import StaticModel
35
+
36
+ # Load a pretrained Model2Vec model
37
+ model = StaticModel.from_pretrained("granite-embedding-english")
38
+
39
+ # Compute text embeddings
40
+ embeddings = model.encode(["Example sentence"])
41
+ ```
42
+
43
+ ### Using Sentence Transformers
44
+
45
+ You can also use the [Sentence Transformers library](https://github.com/UKPLab/sentence-transformers) to load and use the model:
46
+
47
+ ```python
48
+ from sentence_transformers import SentenceTransformer
49
+
50
+ # Load a pretrained Sentence Transformer model
51
+ model = SentenceTransformer("granite-embedding-english")
52
+
53
+ # Compute text embeddings
54
+ embeddings = model.encode(["Example sentence"])
55
+ ```
56
+
57
+ ### Distilling a Model2Vec model
58
+
59
+ You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
60
+
61
+ ```python
62
+ from model2vec.distill import distill
63
+
64
+ # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
65
+ m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
66
+
67
+ # Save the model
68
+ m2v_model.save_pretrained("m2v_model")
69
+ ```
70
+
71
+ ## How it works
72
+
73
+ Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
74
+
75
+ It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
76
+
77
+ ## Additional Resources
78
+
79
+ - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
80
+ - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
81
+ - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
82
+ - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
83
+ - [Website](https://minishlab.github.io/)
84
+
85
+
86
+ ## Library Authors
87
+
88
+ Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
89
+
90
+ ## Citation
91
+
92
+ Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
93
+ ```
94
+ @software{minishlab2024model2vec,
95
+ authors = {Stephan Tulkens and Thomas van Dongen},
96
+ title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
97
+ year = {2024},
98
+ url = {https://github.com/MinishLab/model2vec}
99
+ }
100
+ ```
config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "model2vec",
3
+ "architectures": [
4
+ "StaticModel"
5
+ ],
6
+ "tokenizer_name": "ibm-granite/granite-embedding-30m-english",
7
+ "apply_pca": 256,
8
+ "apply_zipf": null,
9
+ "sif_coefficient": 0.0001,
10
+ "hidden_dim": 256,
11
+ "seq_length": 1000000,
12
+ "normalize": true
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847f9d0e20b9e7c45038f4878382487c74ba78e00564be51c9c450b392672452
3
+ size 51471448
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": ".",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Normalize",
12
+ "type": "sentence_transformers.models.Normalize"
13
+ }
14
+ ]
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff