File size: 2,333 Bytes
fbb2126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- es
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- Mezosky/es_clinical_assistance_10k
metrics:
- wer
model-index:
- name: Whisper Chilean Spanish Medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mezosky/es_clinical_assistance_10k
type: Mezosky/es_clinical_assistance_10k
metrics:
- name: Wer
type: wer
value: 7.774513918030494
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Chilean Spanish Medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Mezosky/es_clinical_assistance_10k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1058
- Wer: 7.7745
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6275 | 0.17 | 100 | 0.5455 | 13.3333 |
| 0.185 | 0.34 | 200 | 0.1782 | 10.7316 |
| 0.1523 | 0.51 | 300 | 0.1539 | 10.9106 |
| 0.1373 | 0.69 | 400 | 0.1399 | 10.1329 |
| 0.1538 | 0.86 | 500 | 0.1322 | 17.5493 |
| 0.1007 | 1.03 | 600 | 0.1238 | 8.4963 |
| 0.0782 | 1.2 | 700 | 0.1187 | 8.4599 |
| 0.0722 | 1.37 | 800 | 0.1128 | 7.8137 |
| 0.0715 | 1.54 | 900 | 0.1081 | 7.6934 |
| 0.0927 | 1.72 | 1000 | 0.1058 | 7.7745 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|