Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +16 -14
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.57 +/- 0.08
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4882ae6cfe16e58f9e209f15d2a58b891062d02fab1692b5b4c3cf3bf53d55d1
|
3 |
+
size 109531
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -19,12 +21,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +35,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,28 +46,28 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681761476741115789,
|
30 |
"learning_rate": 0.0007,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo8JtP/9azL0Iyxy/Orw+v96rj70Nf4E/oL/Sv4ipfD+Frwa9fgGIPqiwKj/Z34o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAkJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]]",
|
40 |
+
"desired_goal": "[[ 0.9287512 -0.09978294 -0.612473 ]\n [-0.7450596 -0.07015203 1.0116898 ]\n [-1.6464729 0.98696184 -0.03288223]\n [ 0.26563638 0.66675806 0.27123907]]",
|
41 |
+
"observation": "[[0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqmUUvtJ55T09Ulc+hbcVvR7w5bwT7Lo9H7w7PdSjnz2XWsQ9MpYZvHiBsb2FDhY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.14491907 0.11204876 0.21027465]\n [-0.03655197 -0.0280686 0.09127059]\n [ 0.0458337 0.0779492 0.09587591]\n [-0.00937419 -0.08667272 0.14653976]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYASNmUS94L+UhpRSlIwBbJRLMowBdJRHQKktuKa5PM11fZQoaAZoCWgPQwjnyMovgzHiv5SGlFKUaBVLMmgWR0CpLVZIg/1QdX2UKGgGaAloD0MIlGdeDrvv3L+UhpRSlGgVSzJoFkdAqSzyVD8cdnV9lChoBmgJaA9DCJllTwKbc9K/lIaUUpRoFUsyaBZHQKksjR+jM3Z1fZQoaAZoCWgPQwhJgJpatlbkv5SGlFKUaBVLMmgWR0CpLsLd30PIdX2UKGgGaAloD0MIYDsYsU8A3b+UhpRSlGgVSzJoFkdAqS5gWDYh+3V9lChoBmgJaA9DCOZatABtq8u/lIaUUpRoFUsyaBZHQKkt/GI9C/p1fZQoaAZoCWgPQwimRuhn6nXSv5SGlFKUaBVLMmgWR0CpLZc+aBqcdX2UKGgGaAloD0MIb2WJzjKL4b+UhpRSlGgVSzJoFkdAqS/VLvkRz3V9lChoBmgJaA9DCERPyqSGNt6/lIaUUpRoFUsyaBZHQKkvcpo9LYh1fZQoaAZoCWgPQwiiJvp8lBHUv5SGlFKUaBVLMmgWR0CpLw6Uqx1QdX2UKGgGaAloD0MIXg8mxccn2b+UhpRSlGgVSzJoFkdAqS6pTIeYD3V9lChoBmgJaA9DCDLGh9nLNuO/lIaUUpRoFUsyaBZHQKkw4yRB/qh1fZQoaAZoCWgPQwjqspjYfNzjv5SGlFKUaBVLMmgWR0CpMICXQdCFdX2UKGgGaAloD0MIo8haQ6k94r+UhpRSlGgVSzJoFkdAqTAciILw4XV9lChoBmgJaA9DCMbctYR80M+/lIaUUpRoFUsyaBZHQKkvtxLCemN1fZQoaAZoCWgPQwiOrPwyGCPqv5SGlFKUaBVLMmgWR0CpMfr3j+72dX2UKGgGaAloD0MINzRlpx9U5L+UhpRSlGgVSzJoFkdAqTGYjKPn0XV9lChoBmgJaA9DCA1TW+ogr+O/lIaUUpRoFUsyaBZHQKkxNI1cdHV1fZQoaAZoCWgPQwia7J+nAQPjv5SGlFKUaBVLMmgWR0CpMM9RR/EwdX2UKGgGaAloD0MIVBoxs8/j57+UhpRSlGgVSzJoFkdAqTMWR3eN1nV9lChoBmgJaA9DCO9v0F59POC/lIaUUpRoFUsyaBZHQKkytAaef7J1fZQoaAZoCWgPQwjhmdAksaTOv5SGlFKUaBVLMmgWR0CpMk/RVp9JdX2UKGgGaAloD0MImlyMgXUc2r+UhpRSlGgVSzJoFkdAqTHqkGiYcHV9lChoBmgJaA9DCC8yAb9GEuq/lIaUUpRoFUsyaBZHQKk0OapgkTp1fZQoaAZoCWgPQwgno8ow7gbZv5SGlFKUaBVLMmgWR0CpM9dLxqfwdX2UKGgGaAloD0MI3bWEfNAz7r+UhpRSlGgVSzJoFkdAqTNzThHby3V9lChoBmgJaA9DCJaVJqWg29C/lIaUUpRoFUsyaBZHQKkzDhJiAlR1fZQoaAZoCWgPQwhrRZvj3Cbev5SGlFKUaBVLMmgWR0CpNUqe05U+dX2UKGgGaAloD0MIvaYHBaUo9L+UhpRSlGgVSzJoFkdAqTToD9wWFnV9lChoBmgJaA9DCOS6KeW1kuW/lIaUUpRoFUsyaBZHQKk0hBt1p0x1fZQoaAZoCWgPQwjHaB1VTZDmv5SGlFKUaBVLMmgWR0CpNB7qY7aJdX2UKGgGaAloD0MI0Joff2nR5b+UhpRSlGgVSzJoFkdAqTZbXxvvSnV9lChoBmgJaA9DCNSeknNij+S/lIaUUpRoFUsyaBZHQKk1+Rsdkrh1fZQoaAZoCWgPQwiln3B2axniv5SGlFKUaBVLMmgWR0CpNZTdk8RudX2UKGgGaAloD0MI/0EkQ44t67+UhpRSlGgVSzJoFkdAqTUvhCMP0HV9lChoBmgJaA9DCOjbgqW6AOy/lIaUUpRoFUsyaBZHQKk3bYJ3PiV1fZQoaAZoCWgPQwj93TtqTIjVv5SGlFKUaBVLMmgWR0CpNwru6VdHdX2UKGgGaAloD0MIhdIXQs7747+UhpRSlGgVSzJoFkdAqTam4AjptHV9lChoBmgJaA9DCLxbWaKzzOm/lIaUUpRoFUsyaBZHQKk2QY/mknF1fZQoaAZoCWgPQwh2Tx4Wak3Tv5SGlFKUaBVLMmgWR0CpOHxIre67dX2UKGgGaAloD0MIVvKxu0BJ87+UhpRSlGgVSzJoFkdAqTgZ3os7MnV9lChoBmgJaA9DCHNlUG1woua/lIaUUpRoFUsyaBZHQKk3tYwIt191fZQoaAZoCWgPQwhbecn/5O/Uv5SGlFKUaBVLMmgWR0CpN1AP/aQFdX2UKGgGaAloD0MIbvse9dcr3L+UhpRSlGgVSzJoFkdAqTmOiHqNZXV9lChoBmgJaA9DCJBnl299WPS/lIaUUpRoFUsyaBZHQKk5LN0NjLB1fZQoaAZoCWgPQwiyEYjX9cvxv5SGlFKUaBVLMmgWR0CpOMl10T11dX2UKGgGaAloD0MISGx3D9B92L+UhpRSlGgVSzJoFkdAqThkv24/eXV9lChoBmgJaA9DCM2v5gDBnPe/lIaUUpRoFUsyaBZHQKk6oJKJ2uB1fZQoaAZoCWgPQwg3je21oPfdv5SGlFKUaBVLMmgWR0CpOj4o7V8UdX2UKGgGaAloD0MIKuW1ErpL4b+UhpRSlGgVSzJoFkdAqTnZ2MbWE3V9lChoBmgJaA9DCGheDrvvmOK/lIaUUpRoFUsyaBZHQKk5dNFjNIN1fZQoaAZoCWgPQwic3Vomw/HWv5SGlFKUaBVLMmgWR0CpO7dhJAdGdX2UKGgGaAloD0MIs+pztRV78b+UhpRSlGgVSzJoFkdAqTtVA5aNdnV9lChoBmgJaA9DCMf2WtB74/i/lIaUUpRoFUsyaBZHQKk68OmzjWF1fZQoaAZoCWgPQwj+YrZkVQT6v5SGlFKUaBVLMmgWR0CpOoubqhUSdX2UKGgGaAloD0MIPfGcLSD08r+UhpRSlGgVSzJoFkdAqTzH2AXl83V9lChoBmgJaA9DCKpHGtzWlue/lIaUUpRoFUsyaBZHQKk8ZWq94/x1fZQoaAZoCWgPQwjSim8ofLbxv5SGlFKUaBVLMmgWR0CpPAE4NqgzdX2UKGgGaAloD0MIri6nBMTk9L+UhpRSlGgVSzJoFkdAqTub9wWFe3V9lChoBmgJaA9DCIogzsMJjP2/lIaUUpRoFUsyaBZHQKk97doFmnR1fZQoaAZoCWgPQwj/A6xVu6bgv5SGlFKUaBVLMmgWR0CpPYs7U5MldX2UKGgGaAloD0MIFCaMZmX7yr+UhpRSlGgVSzJoFkdAqT0m/zreInV9lChoBmgJaA9DCKpkAKjihvS/lIaUUpRoFUsyaBZHQKk8wcKgIyF1fZQoaAZoCWgPQwg6JLVQMrniv5SGlFKUaBVLMmgWR0CpPwYgq3EydX2UKGgGaAloD0MIYRxcOua86L+UhpRSlGgVSzJoFkdAqT6jtJFspHV9lChoBmgJaA9DCAKaCBueHvK/lIaUUpRoFUsyaBZHQKk+P7b+Lm91fZQoaAZoCWgPQwiLa3wm+2f2v5SGlFKUaBVLMmgWR0CpPdqV6eGxdX2UKGgGaAloD0MIsoF0sWkl8L+UhpRSlGgVSzJoFkdAqUAbfrKNhnV9lChoBmgJaA9DCMUe2scK/u+/lIaUUpRoFUsyaBZHQKk/uR6nivR1fZQoaAZoCWgPQwg0D2CRX7/pv5SGlFKUaBVLMmgWR0CpP1UF8ohIdX2UKGgGaAloD0MItvepKjSQ4L+UhpRSlGgVSzJoFkdAqT7vlnyup3V9lChoBmgJaA9DCBbcD3hgAOy/lIaUUpRoFUsyaBZHQKlBqCROk+J1fZQoaAZoCWgPQwhu+N10y47lv5SGlFKUaBVLMmgWR0CpQUZkCmuUdX2UKGgGaAloD0MIineAJy0c8r+UhpRSlGgVSzJoFkdAqUDjT2FnI3V9lChoBmgJaA9DCLeyRGeZxea/lIaUUpRoFUsyaBZHQKlAfm+0w8J1fZQoaAZoCWgPQwjkgcgiTbziv5SGlFKUaBVLMmgWR0CpQ2KIrOJMdX2UKGgGaAloD0MI+fauQV967b+UhpRSlGgVSzJoFkdAqUMAwqRU3nV9lChoBmgJaA9DCC5zuiwm9vG/lIaUUpRoFUsyaBZHQKlCnrULDyh1fZQoaAZoCWgPQwhh304iwv/0v5SGlFKUaBVLMmgWR0CpQjouPFNtdX2UKGgGaAloD0MIHXHIBtLF17+UhpRSlGgVSzJoFkdAqUUqL61stXV9lChoBmgJaA9DCJinc0UpIeu/lIaUUpRoFUsyaBZHQKlEyKgqVhV1fZQoaAZoCWgPQwjQm4pUGFvvv5SGlFKUaBVLMmgWR0CpRGVRUFSsdX2UKGgGaAloD0MIwTv59NgW4b+UhpRSlGgVSzJoFkdAqUQA4ACGOHV9lChoBmgJaA9DCPG76ZYdYuW/lIaUUpRoFUsyaBZHQKlG9JK8L8d1fZQoaAZoCWgPQwiTNeohGt3cv5SGlFKUaBVLMmgWR0CpRpLkCFK1dX2UKGgGaAloD0MIjh6/t+lP7L+UhpRSlGgVSzJoFkdAqUYvhwVCX3V9lChoBmgJaA9DCNlD+1jB7+K/lIaUUpRoFUsyaBZHQKlFzEFW4mV1fZQoaAZoCWgPQwj2zmirkkjpv5SGlFKUaBVLMmgWR0CpSNd7fHghdX2UKGgGaAloD0MIRl9BmrFo4r+UhpRSlGgVSzJoFkdAqUh1/c32mHV9lChoBmgJaA9DCP7tsl93uvG/lIaUUpRoFUsyaBZHQKlIEuB+Wnl1fZQoaAZoCWgPQwhwJqYLsXrnv5SGlFKUaBVLMmgWR0CpR66hQFcIdX2UKGgGaAloD0MI0jqqmiBq6L+UhpRSlGgVSzJoFkdAqUpzytmthnV9lChoBmgJaA9DCEI/U69bhOa/lIaUUpRoFUsyaBZHQKlKEVqveP91fZQoaAZoCWgPQwjZlZaRek/hv5SGlFKUaBVLMmgWR0CpSa0p3HJcdX2UKGgGaAloD0MIsRafAmA81r+UhpRSlGgVSzJoFkdAqUlH7Hhjv3V9lChoBmgJaA9DCOM0RBX+DN6/lIaUUpRoFUsyaBZHQKlLrNdqtYB1fZQoaAZoCWgPQwigppat9UXav5SGlFKUaBVLMmgWR0CpS0pFLFn7dX2UKGgGaAloD0MI0ZFc/kP667+UhpRSlGgVSzJoFkdAqUrmGsV+JHV9lChoBmgJaA9DCAwFbAcjduy/lIaUUpRoFUsyaBZHQKlKganaWX11ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 50000,
|
68 |
"n_steps": 5,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.95,
|
71 |
"ent_coef": 0.0,
|
72 |
"vf_coef": 0.5,
|
73 |
"max_grad_norm": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c661830582b1f10acf8c9f5eea5a3caaab272f4264911f3bd0da69a620e245ce
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fd8b89d9f788ea686a0f35d63c40b47630ec7215f46c64141667b1ad903d00c
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f64ed575ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64ed576680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681750985637745196, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcJwePx4dW73P5PU+cJwePx4dW73P5PU+cJwePx4dW73P5PU+cJwePx4dW73P5PU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASHmMPytfY79OAIU/BUiTP4DiSr4aHFy/47PKvw+DpD9KydM/T8y6P2Vegz9iNTi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABwnB4/Hh1bvc/k9T6Fw4o8P10aO22cgjxwnB4/Hh1bvc/k9T6Fw4o8P10aO22cgjxwnB4/Hh1bvc/k9T6Fw4o8P10aO22cgjxwnB4/Hh1bvc/k9T6Fw4o8P10aO22cgjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.61957455 -0.05349457 0.4802613 ]\n [ 0.61957455 -0.05349457 0.4802613 ]\n [ 0.61957455 -0.05349457 0.4802613 ]\n [ 0.61957455 -0.05349457 0.4802613 ]]", "desired_goal": "[[ 1.0974512 -0.8881709 1.0390718 ]\n [ 1.1506354 -0.19812965 -0.8598038 ]\n [-1.5836147 1.2852496 1.6545804 ]\n [ 1.45936 1.0263182 -0.71956456]]", "observation": "[[ 0.61957455 -0.05349457 0.4802613 0.01693893 0.00235541 0.01594373]\n [ 0.61957455 -0.05349457 0.4802613 0.01693893 0.00235541 0.01594373]\n [ 0.61957455 -0.05349457 0.4802613 0.01693893 0.00235541 0.01594373]\n [ 0.61957455 -0.05349457 0.4802613 0.01693893 0.00235541 0.01594373]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9zvTPUEYBD5eQHM+pIlOvTx4Qr1Q6Xc+5Jz2veCZVj3ZTBM+CYBRO0nPo7ycqHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10314172 0.12899877 0.23755023]\n [-0.05042423 -0.04747795 0.24210095]\n [-0.12041643 0.05239284 0.14384784]\n [ 0.00319672 -0.0199963 0.2428307 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0A8jhEdrGcCUhpRSlIwBbJRLMowBdJRHQLbQlbor4Fl1fZQoaAZoCWgPQwjW/PhLixoOwJSGlFKUaBVLMmgWR0C20FqPOpsHdX2UKGgGaAloD0MIRPesa7R0LcCUhpRSlGgVSzJoFkdAttA0wCbMHXV9lChoBmgJaA9DCOKt82+XnQ/AlIaUUpRoFUsyaBZHQLbQFvVmSQp1fZQoaAZoCWgPQwhB8s6hDLUGwJSGlFKUaBVLMmgWR0C20SL6+FlDdX2UKGgGaAloD0MIVG8NbJWILMCUhpRSlGgVSzJoFkdAttDnh73PA3V9lChoBmgJaA9DCKuVCb/UVyLAlIaUUpRoFUsyaBZHQLbQwalDWsl1fZQoaAZoCWgPQwjQJodPOmEcwJSGlFKUaBVLMmgWR0C20KO0PYnOdX2UKGgGaAloD0MIx4FXy505CMCUhpRSlGgVSzJoFkdAttG6uzQeFXV9lChoBmgJaA9DCEmhLHx9DRbAlIaUUpRoFUsyaBZHQLbRf1EVnEl1fZQoaAZoCWgPQwgMeJlho0wYwJSGlFKUaBVLMmgWR0C20VmIoE0SdX2UKGgGaAloD0MIJqjhW1hHH8CUhpRSlGgVSzJoFkdAttE7hYNiIHV9lChoBmgJaA9DCGOa6V4nLSTAlIaUUpRoFUsyaBZHQLbSQgSvkil1fZQoaAZoCWgPQwio/6z58a8iwJSGlFKUaBVLMmgWR0C20gar3j+8dX2UKGgGaAloD0MI8gnZeRtjIMCUhpRSlGgVSzJoFkdAttHg3BHkLnV9lChoBmgJaA9DCOz4LxAEGBHAlIaUUpRoFUsyaBZHQLbRwyKekHl1fZQoaAZoCWgPQwjdDDfg85MhwJSGlFKUaBVLMmgWR0C20sFNlAeJdX2UKGgGaAloD0MInYTSF0KOLsCUhpRSlGgVSzJoFkdAttKF/x2B8XV9lChoBmgJaA9DCIaOHVTiCh/AlIaUUpRoFUsyaBZHQLbSYCp3os91fZQoaAZoCWgPQwh40Oy6t1okwJSGlFKUaBVLMmgWR0C20kInOSntdX2UKGgGaAloD0MIZMxdS8iXH8CUhpRSlGgVSzJoFkdAttNNJ7LMcXV9lChoBmgJaA9DCCdO7ncoihHAlIaUUpRoFUsyaBZHQLbTEbItDlZ1fZQoaAZoCWgPQwiyuWqeIxISwJSGlFKUaBVLMmgWR0C20uvJeVs2dX2UKGgGaAloD0MId6IkJNLeK8CUhpRSlGgVSzJoFkdAttLN1bJOnHV9lChoBmgJaA9DCMrcfCO6VxHAlIaUUpRoFUsyaBZHQLbT00MgEEF1fZQoaAZoCWgPQwgUBfpEnmwgwJSGlFKUaBVLMmgWR0C205fWpZOjdX2UKGgGaAloD0MIlumXiLe+FsCUhpRSlGgVSzJoFkdAttNyCuloDnV9lChoBmgJaA9DCP0tAfinBBTAlIaUUpRoFUsyaBZHQLbTU/tIClt1fZQoaAZoCWgPQwgHtHQF2+giwJSGlFKUaBVLMmgWR0C21FJv99+gdX2UKGgGaAloD0MIFRxeEJGqGcCUhpRSlGgVSzJoFkdAttQW+N96TnV9lChoBmgJaA9DCHsUrkfh2grAlIaUUpRoFUsyaBZHQLbT8RZEDyR1fZQoaAZoCWgPQwgO2xZlNjgSwJSGlFKUaBVLMmgWR0C209Mc+7lJdX2UKGgGaAloD0MIylLr/UY7FsCUhpRSlGgVSzJoFkdAttTZ5kbxVnV9lChoBmgJaA9DCC4dc56xjx/AlIaUUpRoFUsyaBZHQLbUnqZc9nt1fZQoaAZoCWgPQwhkzF1LyGcOwJSGlFKUaBVLMmgWR0C21HkaMrEtdX2UKGgGaAloD0MIVOQQcXPqH8CUhpRSlGgVSzJoFkdAttRbIGQjlnV9lChoBmgJaA9DCNi3k4jwHyTAlIaUUpRoFUsyaBZHQLbVeqslsxh1fZQoaAZoCWgPQwg6lQwAVdwWwJSGlFKUaBVLMmgWR0C21T+H31zydX2UKGgGaAloD0MIZmoSvCEdHsCUhpRSlGgVSzJoFkdAttUZ42S+xnV9lChoBmgJaA9DCNp0BHCzKBfAlIaUUpRoFUsyaBZHQLbU/BI4EOl1fZQoaAZoCWgPQwix/WSMDxMIwJSGlFKUaBVLMmgWR0C21g4p2ECedX2UKGgGaAloD0MIhslUwajkF8CUhpRSlGgVSzJoFkdAttXTJMg2ZXV9lChoBmgJaA9DCNibGJKTSRfAlIaUUpRoFUsyaBZHQLbVrVGTcIt1fZQoaAZoCWgPQwhf8GlOXpQawJSGlFKUaBVLMmgWR0C21Y9fXwsodX2UKGgGaAloD0MIRWPt72x/F8CUhpRSlGgVSzJoFkdAtta/1kDp1XV9lChoBmgJaA9DCHHHm/wW5SfAlIaUUpRoFUsyaBZHQLbWhMxXXAd1fZQoaAZoCWgPQwiAZaVJKcgbwJSGlFKUaBVLMmgWR0C21l+K0lZ6dX2UKGgGaAloD0MIwVYJFodzE8CUhpRSlGgVSzJoFkdAttZB0V8CxXV9lChoBmgJaA9DCLQB2IAIERfAlIaUUpRoFUsyaBZHQLbXlR0U4711fZQoaAZoCWgPQwjAsPz5thAuwJSGlFKUaBVLMmgWR0C211oNAkcCdX2UKGgGaAloD0MI+7DeqBXeIMCUhpRSlGgVSzJoFkdAttc0figkC3V9lChoBmgJaA9DCLKBdLFpxQXAlIaUUpRoFUsyaBZHQLbXFzVMEid1fZQoaAZoCWgPQwiWsDbGTugVwJSGlFKUaBVLMmgWR0C22IDcM3IddX2UKGgGaAloD0MIEYyDS8f8FcCUhpRSlGgVSzJoFkdAtthGEOAiFHV9lChoBmgJaA9DCJbpl4i3zgzAlIaUUpRoFUsyaBZHQLbYISofjjt1fZQoaAZoCWgPQwijQJ/Ik4QhwJSGlFKUaBVLMmgWR0C22ANitq59dX2UKGgGaAloD0MIV5dTAmIyGsCUhpRSlGgVSzJoFkdAttlcUfxMFnV9lChoBmgJaA9DCHKlngWhbBbAlIaUUpRoFUsyaBZHQLbZIWLP2PF1fZQoaAZoCWgPQwihKxGo/iEcwJSGlFKUaBVLMmgWR0C22PxZyMkydX2UKGgGaAloD0MIfcwHBDrzEMCUhpRSlGgVSzJoFkdAttjfQJHAh3V9lChoBmgJaA9DCH2vITguoxHAlIaUUpRoFUsyaBZHQLbaRAxi5NJ1fZQoaAZoCWgPQwgFajF4mEYcwJSGlFKUaBVLMmgWR0C22gkth/iHdX2UKGgGaAloD0MI7RD/sKWPJMCUhpRSlGgVSzJoFkdAttnjwjMV13V9lChoBmgJaA9DCEgVxausxSDAlIaUUpRoFUsyaBZHQLbZxikO7QN1fZQoaAZoCWgPQwiwVu2akFYiwJSGlFKUaBVLMmgWR0C22xg+t8u0dX2UKGgGaAloD0MIZvZ5jPIsIsCUhpRSlGgVSzJoFkdAttrdINEw4HV9lChoBmgJaA9DCIEk7NtJtB7AlIaUUpRoFUsyaBZHQLbat57PY4B1fZQoaAZoCWgPQwjghEIEHDogwJSGlFKUaBVLMmgWR0C22poR28qXdX2UKGgGaAloD0MIbjXrjO8rEsCUhpRSlGgVSzJoFkdAttwGV8kUsXV9lChoBmgJaA9DCMQnnUgwpRDAlIaUUpRoFUsyaBZHQLbbyuXeFcp1fZQoaAZoCWgPQwiR7ucU5McJwJSGlFKUaBVLMmgWR0C226VOwgTzdX2UKGgGaAloD0MIARO4dTfPEsCUhpRSlGgVSzJoFkdAttuHgTAWSHV9lChoBmgJaA9DCFBSYAFMiRbAlIaUUpRoFUsyaBZHQLbcjKXfIjp1fZQoaAZoCWgPQwhozCTqBe8gwJSGlFKUaBVLMmgWR0C23FEwi7kGdX2UKGgGaAloD0MIA+yjU1fuIcCUhpRSlGgVSzJoFkdAttwrXWe6I3V9lChoBmgJaA9DCPAw7Zv7+xfAlIaUUpRoFUsyaBZHQLbcDZiuuA91fZQoaAZoCWgPQwhf7SjOUbcUwJSGlFKUaBVLMmgWR0C23SBDohZAdX2UKGgGaAloD0MIlnuBWaEoCcCUhpRSlGgVSzJoFkdAttzlDu0CzXV9lChoBmgJaA9DCLrb9dIUQRzAlIaUUpRoFUsyaBZHQLbcvyLQ5WB1fZQoaAZoCWgPQwhmhLcHIeAWwJSGlFKUaBVLMmgWR0C23KENe+mFdX2UKGgGaAloD0MI0F59PPStLMCUhpRSlGgVSzJoFkdAtt2iBun/DXV9lChoBmgJaA9DCEEqxY7GsRLAlIaUUpRoFUsyaBZHQLbdZrsByS51fZQoaAZoCWgPQwigT+RJ0iUewJSGlFKUaBVLMmgWR0C23UDR2KVIdX2UKGgGaAloD0MIu7n4257AF8CUhpRSlGgVSzJoFkdAtt0ivMbFTHV9lChoBmgJaA9DCJbQXRJn9RbAlIaUUpRoFUsyaBZHQLbeMOJcgQp1fZQoaAZoCWgPQwjuYMQ+AVQVwJSGlFKUaBVLMmgWR0C23fV4C6pYdX2UKGgGaAloD0MImiMrvwxmBsCUhpRSlGgVSzJoFkdAtt3Pvd/KAHV9lChoBmgJaA9DCL4Ts14MVRXAlIaUUpRoFUsyaBZHQLbdsag26091fZQoaAZoCWgPQwjqWRDK+4AgwJSGlFKUaBVLMmgWR0C23rF2aDwpdX2UKGgGaAloD0MIoYDtYMQuJ8CUhpRSlGgVSzJoFkdAtt52B7NSqHV9lChoBmgJaA9DCAA6zJcX4AzAlIaUUpRoFUsyaBZHQLbeUDwpe/p1fZQoaAZoCWgPQwjFOH8TCsEfwJSGlFKUaBVLMmgWR0C23jIj4YaYdX2UKGgGaAloD0MIFviKbr0GGsCUhpRSlGgVSzJoFkdAtt9HhAGB4HV9lChoBmgJaA9DCAt/hjdrgBbAlIaUUpRoFUsyaBZHQLbfDH0K7Zp1fZQoaAZoCWgPQwjWxAJf0X0ewJSGlFKUaBVLMmgWR0C23ubXUYsNdX2UKGgGaAloD0MIVDvD1JYaCcCUhpRSlGgVSzJoFkdAtt7JITXarXV9lChoBmgJaA9DCBdGelG7bx3AlIaUUpRoFUsyaBZHQLbf2GbCrLh1fZQoaAZoCWgPQwiu78NBQjQJwJSGlFKUaBVLMmgWR0C23506tDD1dX2UKGgGaAloD0MI7DNnfcqxFsCUhpRSlGgVSzJoFkdAtt93jghr33V9lChoBmgJaA9DCBhanZyhOBjAlIaUUpRoFUsyaBZHQLbfWYbsF+x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f64ed575ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64ed576680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681761476741115789, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/JCe8PsZfpDtLqgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo8JtP/9azL0Iyxy/Orw+v96rj70Nf4E/oL/Sv4ipfD+Frwa9fgGIPqiwKj/Z34o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAkJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT0kJ7w+xl+kO0uqCT8Qjlg9vbuBOt1TXT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]\n [0.36748612 0.0050163 0.5377547 ]]", "desired_goal": "[[ 0.9287512 -0.09978294 -0.612473 ]\n [-0.7450596 -0.07015203 1.0116898 ]\n [-1.6464729 0.98696184 -0.03288223]\n [ 0.26563638 0.66675806 0.27123907]]", "observation": "[[0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]\n [0.36748612 0.0050163 0.5377547 0.05286986 0.00098979 0.05403506]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqmUUvtJ55T09Ulc+hbcVvR7w5bwT7Lo9H7w7PdSjnz2XWsQ9MpYZvHiBsb2FDhY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14491907 0.11204876 0.21027465]\n [-0.03655197 -0.0280686 0.09127059]\n [ 0.0458337 0.0779492 0.09587591]\n [-0.00937419 -0.08667272 0.14653976]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYASNmUS94L+UhpRSlIwBbJRLMowBdJRHQKktuKa5PM11fZQoaAZoCWgPQwjnyMovgzHiv5SGlFKUaBVLMmgWR0CpLVZIg/1QdX2UKGgGaAloD0MIlGdeDrvv3L+UhpRSlGgVSzJoFkdAqSzyVD8cdnV9lChoBmgJaA9DCJllTwKbc9K/lIaUUpRoFUsyaBZHQKksjR+jM3Z1fZQoaAZoCWgPQwhJgJpatlbkv5SGlFKUaBVLMmgWR0CpLsLd30PIdX2UKGgGaAloD0MIYDsYsU8A3b+UhpRSlGgVSzJoFkdAqS5gWDYh+3V9lChoBmgJaA9DCOZatABtq8u/lIaUUpRoFUsyaBZHQKkt/GI9C/p1fZQoaAZoCWgPQwimRuhn6nXSv5SGlFKUaBVLMmgWR0CpLZc+aBqcdX2UKGgGaAloD0MIb2WJzjKL4b+UhpRSlGgVSzJoFkdAqS/VLvkRz3V9lChoBmgJaA9DCERPyqSGNt6/lIaUUpRoFUsyaBZHQKkvcpo9LYh1fZQoaAZoCWgPQwiiJvp8lBHUv5SGlFKUaBVLMmgWR0CpLw6Uqx1QdX2UKGgGaAloD0MIXg8mxccn2b+UhpRSlGgVSzJoFkdAqS6pTIeYD3V9lChoBmgJaA9DCDLGh9nLNuO/lIaUUpRoFUsyaBZHQKkw4yRB/qh1fZQoaAZoCWgPQwjqspjYfNzjv5SGlFKUaBVLMmgWR0CpMICXQdCFdX2UKGgGaAloD0MIo8haQ6k94r+UhpRSlGgVSzJoFkdAqTAciILw4XV9lChoBmgJaA9DCMbctYR80M+/lIaUUpRoFUsyaBZHQKkvtxLCemN1fZQoaAZoCWgPQwiOrPwyGCPqv5SGlFKUaBVLMmgWR0CpMfr3j+72dX2UKGgGaAloD0MINzRlpx9U5L+UhpRSlGgVSzJoFkdAqTGYjKPn0XV9lChoBmgJaA9DCA1TW+ogr+O/lIaUUpRoFUsyaBZHQKkxNI1cdHV1fZQoaAZoCWgPQwia7J+nAQPjv5SGlFKUaBVLMmgWR0CpMM9RR/EwdX2UKGgGaAloD0MIVBoxs8/j57+UhpRSlGgVSzJoFkdAqTMWR3eN1nV9lChoBmgJaA9DCO9v0F59POC/lIaUUpRoFUsyaBZHQKkytAaef7J1fZQoaAZoCWgPQwjhmdAksaTOv5SGlFKUaBVLMmgWR0CpMk/RVp9JdX2UKGgGaAloD0MImlyMgXUc2r+UhpRSlGgVSzJoFkdAqTHqkGiYcHV9lChoBmgJaA9DCC8yAb9GEuq/lIaUUpRoFUsyaBZHQKk0OapgkTp1fZQoaAZoCWgPQwgno8ow7gbZv5SGlFKUaBVLMmgWR0CpM9dLxqfwdX2UKGgGaAloD0MI3bWEfNAz7r+UhpRSlGgVSzJoFkdAqTNzThHby3V9lChoBmgJaA9DCJaVJqWg29C/lIaUUpRoFUsyaBZHQKkzDhJiAlR1fZQoaAZoCWgPQwhrRZvj3Cbev5SGlFKUaBVLMmgWR0CpNUqe05U+dX2UKGgGaAloD0MIvaYHBaUo9L+UhpRSlGgVSzJoFkdAqTToD9wWFnV9lChoBmgJaA9DCOS6KeW1kuW/lIaUUpRoFUsyaBZHQKk0hBt1p0x1fZQoaAZoCWgPQwjHaB1VTZDmv5SGlFKUaBVLMmgWR0CpNB7qY7aJdX2UKGgGaAloD0MI0Joff2nR5b+UhpRSlGgVSzJoFkdAqTZbXxvvSnV9lChoBmgJaA9DCNSeknNij+S/lIaUUpRoFUsyaBZHQKk1+Rsdkrh1fZQoaAZoCWgPQwiln3B2axniv5SGlFKUaBVLMmgWR0CpNZTdk8RudX2UKGgGaAloD0MI/0EkQ44t67+UhpRSlGgVSzJoFkdAqTUvhCMP0HV9lChoBmgJaA9DCOjbgqW6AOy/lIaUUpRoFUsyaBZHQKk3bYJ3PiV1fZQoaAZoCWgPQwj93TtqTIjVv5SGlFKUaBVLMmgWR0CpNwru6VdHdX2UKGgGaAloD0MIhdIXQs7747+UhpRSlGgVSzJoFkdAqTam4AjptHV9lChoBmgJaA9DCLxbWaKzzOm/lIaUUpRoFUsyaBZHQKk2QY/mknF1fZQoaAZoCWgPQwh2Tx4Wak3Tv5SGlFKUaBVLMmgWR0CpOHxIre67dX2UKGgGaAloD0MIVvKxu0BJ87+UhpRSlGgVSzJoFkdAqTgZ3os7MnV9lChoBmgJaA9DCHNlUG1woua/lIaUUpRoFUsyaBZHQKk3tYwIt191fZQoaAZoCWgPQwhbecn/5O/Uv5SGlFKUaBVLMmgWR0CpN1AP/aQFdX2UKGgGaAloD0MIbvse9dcr3L+UhpRSlGgVSzJoFkdAqTmOiHqNZXV9lChoBmgJaA9DCJBnl299WPS/lIaUUpRoFUsyaBZHQKk5LN0NjLB1fZQoaAZoCWgPQwiyEYjX9cvxv5SGlFKUaBVLMmgWR0CpOMl10T11dX2UKGgGaAloD0MISGx3D9B92L+UhpRSlGgVSzJoFkdAqThkv24/eXV9lChoBmgJaA9DCM2v5gDBnPe/lIaUUpRoFUsyaBZHQKk6oJKJ2uB1fZQoaAZoCWgPQwg3je21oPfdv5SGlFKUaBVLMmgWR0CpOj4o7V8UdX2UKGgGaAloD0MIKuW1ErpL4b+UhpRSlGgVSzJoFkdAqTnZ2MbWE3V9lChoBmgJaA9DCGheDrvvmOK/lIaUUpRoFUsyaBZHQKk5dNFjNIN1fZQoaAZoCWgPQwic3Vomw/HWv5SGlFKUaBVLMmgWR0CpO7dhJAdGdX2UKGgGaAloD0MIs+pztRV78b+UhpRSlGgVSzJoFkdAqTtVA5aNdnV9lChoBmgJaA9DCMf2WtB74/i/lIaUUpRoFUsyaBZHQKk68OmzjWF1fZQoaAZoCWgPQwj+YrZkVQT6v5SGlFKUaBVLMmgWR0CpOoubqhUSdX2UKGgGaAloD0MIPfGcLSD08r+UhpRSlGgVSzJoFkdAqTzH2AXl83V9lChoBmgJaA9DCKpHGtzWlue/lIaUUpRoFUsyaBZHQKk8ZWq94/x1fZQoaAZoCWgPQwjSim8ofLbxv5SGlFKUaBVLMmgWR0CpPAE4NqgzdX2UKGgGaAloD0MIri6nBMTk9L+UhpRSlGgVSzJoFkdAqTub9wWFe3V9lChoBmgJaA9DCIogzsMJjP2/lIaUUpRoFUsyaBZHQKk97doFmnR1fZQoaAZoCWgPQwj/A6xVu6bgv5SGlFKUaBVLMmgWR0CpPYs7U5MldX2UKGgGaAloD0MIFCaMZmX7yr+UhpRSlGgVSzJoFkdAqT0m/zreInV9lChoBmgJaA9DCKpkAKjihvS/lIaUUpRoFUsyaBZHQKk8wcKgIyF1fZQoaAZoCWgPQwg6JLVQMrniv5SGlFKUaBVLMmgWR0CpPwYgq3EydX2UKGgGaAloD0MIYRxcOua86L+UhpRSlGgVSzJoFkdAqT6jtJFspHV9lChoBmgJaA9DCAKaCBueHvK/lIaUUpRoFUsyaBZHQKk+P7b+Lm91fZQoaAZoCWgPQwiLa3wm+2f2v5SGlFKUaBVLMmgWR0CpPdqV6eGxdX2UKGgGaAloD0MIsoF0sWkl8L+UhpRSlGgVSzJoFkdAqUAbfrKNhnV9lChoBmgJaA9DCMUe2scK/u+/lIaUUpRoFUsyaBZHQKk/uR6nivR1fZQoaAZoCWgPQwg0D2CRX7/pv5SGlFKUaBVLMmgWR0CpP1UF8ohIdX2UKGgGaAloD0MItvepKjSQ4L+UhpRSlGgVSzJoFkdAqT7vlnyup3V9lChoBmgJaA9DCBbcD3hgAOy/lIaUUpRoFUsyaBZHQKlBqCROk+J1fZQoaAZoCWgPQwhu+N10y47lv5SGlFKUaBVLMmgWR0CpQUZkCmuUdX2UKGgGaAloD0MIineAJy0c8r+UhpRSlGgVSzJoFkdAqUDjT2FnI3V9lChoBmgJaA9DCLeyRGeZxea/lIaUUpRoFUsyaBZHQKlAfm+0w8J1fZQoaAZoCWgPQwjkgcgiTbziv5SGlFKUaBVLMmgWR0CpQ2KIrOJMdX2UKGgGaAloD0MI+fauQV967b+UhpRSlGgVSzJoFkdAqUMAwqRU3nV9lChoBmgJaA9DCC5zuiwm9vG/lIaUUpRoFUsyaBZHQKlCnrULDyh1fZQoaAZoCWgPQwhh304iwv/0v5SGlFKUaBVLMmgWR0CpQjouPFNtdX2UKGgGaAloD0MIHXHIBtLF17+UhpRSlGgVSzJoFkdAqUUqL61stXV9lChoBmgJaA9DCJinc0UpIeu/lIaUUpRoFUsyaBZHQKlEyKgqVhV1fZQoaAZoCWgPQwjQm4pUGFvvv5SGlFKUaBVLMmgWR0CpRGVRUFSsdX2UKGgGaAloD0MIwTv59NgW4b+UhpRSlGgVSzJoFkdAqUQA4ACGOHV9lChoBmgJaA9DCPG76ZYdYuW/lIaUUpRoFUsyaBZHQKlG9JK8L8d1fZQoaAZoCWgPQwiTNeohGt3cv5SGlFKUaBVLMmgWR0CpRpLkCFK1dX2UKGgGaAloD0MIjh6/t+lP7L+UhpRSlGgVSzJoFkdAqUYvhwVCX3V9lChoBmgJaA9DCNlD+1jB7+K/lIaUUpRoFUsyaBZHQKlFzEFW4mV1fZQoaAZoCWgPQwj2zmirkkjpv5SGlFKUaBVLMmgWR0CpSNd7fHghdX2UKGgGaAloD0MIRl9BmrFo4r+UhpRSlGgVSzJoFkdAqUh1/c32mHV9lChoBmgJaA9DCP7tsl93uvG/lIaUUpRoFUsyaBZHQKlIEuB+Wnl1fZQoaAZoCWgPQwhwJqYLsXrnv5SGlFKUaBVLMmgWR0CpR66hQFcIdX2UKGgGaAloD0MI0jqqmiBq6L+UhpRSlGgVSzJoFkdAqUpzytmthnV9lChoBmgJaA9DCEI/U69bhOa/lIaUUpRoFUsyaBZHQKlKEVqveP91fZQoaAZoCWgPQwjZlZaRek/hv5SGlFKUaBVLMmgWR0CpSa0p3HJcdX2UKGgGaAloD0MIsRafAmA81r+UhpRSlGgVSzJoFkdAqUlH7Hhjv3V9lChoBmgJaA9DCOM0RBX+DN6/lIaUUpRoFUsyaBZHQKlLrNdqtYB1fZQoaAZoCWgPQwigppat9UXav5SGlFKUaBVLMmgWR0CpS0pFLFn7dX2UKGgGaAloD0MI0ZFc/kP667+UhpRSlGgVSzJoFkdAqUrmGsV+JHV9lChoBmgJaA9DCAwFbAcjduy/lIaUUpRoFUsyaBZHQKlKganaWX11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.5683317687246017, "std_reward": 0.08309180950422593, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T21:08:33.554579"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e9454b92b53f9097366f76851aac54ab7de63b5dac5ea93e0259d87bf22df0a
|
3 |
size 2381
|