File size: 28,350 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "starter_notebook.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Retrieve your data & make a parallel corpus\n",
"\n",
"If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
"\n",
"Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "oGRmDELn7Az0",
"colab": {}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "Cn3tgQLzUxwn",
"colab": {}
},
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"xh\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead!\n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"colab": {}
},
"source": [
"!echo $gdrive_path"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"colab": {}
},
"source": [
"# Install opus-tools\n",
"! pip install opustools-pkg"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"colab": {}
},
"source": [
"# Downloading our corpus\n",
"! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
"\n",
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "n48GDRnP8y2G",
"colab_type": "code",
"colab": {}
},
"source": [
"# Download the global test set.\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"os.environ[\"trg\"] = target_language \n",
"os.environ[\"src\"] = source_language \n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"! mv test.en-$trg.en test.en\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NqDG-CI28y2L",
"colab_type": "code",
"colab": {}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"colab": {}
},
"source": [
"import pandas as pd\n",
"\n",
"# TMX file to dataframe\n",
"source_file = 'jw300.' + source_language\n",
"target_file = 'jw300.' + target_language\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" else:\n",
" skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
"#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"colab": {}
},
"source": [
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"# (this is optional and something that you might want to comment out \n",
"# depending on the size of your corpus)\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Z_1BwAApEtMk",
"colab_type": "code",
"colab": {}
},
"source": [
"# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
"# test and training sets.\n",
"! pip install fuzzywuzzy\n",
"! pip install python-Levenshtein\n",
"import time\n",
"from fuzzywuzzy import process\n",
"import numpy as np\n",
"\n",
"# reset the index of the training set after previous filtering\n",
"df_pp.reset_index(drop=False, inplace=True)\n",
"\n",
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
"\n",
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"colab": {}
},
"source": [
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head train.*\n",
"! head dev.*"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"colab": {}
},
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"colab": {}
},
"source": [
"# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# Do subword NMT\n",
"from os import path\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"# Learn BPEs on the training data.\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# Apply BPE splits to the development and test data.\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\"\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# Some output\n",
"! echo \"BPE Xhosa Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "IlMitUHR8Qy-",
"colab": {}
},
"source": [
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "PIs1lY2hxMsl",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"data/{name}/train.bpe\"\n",
" dev: \"data/{name}/dev.bpe\"\n",
" test: \"data/{name}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"data/{name}/vocab.txt\"\n",
" trg_vocab: \"data/{name}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 30 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 1000 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"models/{name}_transformer\"\n",
" overwrite: False # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"colab": {}
},
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "MBoDS09JM807",
"colab": {}
},
"source": [
"# Copy the created models from the notebook storage to google drive for persistant storage \n",
"!cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n94wlrCjVc17",
"colab": {}
},
"source": [
"# Output our validation accuracy\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "66WhRE9lIhoD",
"colab": {}
},
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
],
"execution_count": 0,
"outputs": []
}
]
} |