chenggong1995 commited on
Commit
e3046bf
·
verified ·
1 Parent(s): 53f6b05

Model save

Browse files
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-3B-Instruct-grpo-E6-D100-L4096-lr5e7
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-3B-Instruct-grpo-E6-D100-L4096-lr5e7
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="chenggong1995/Qwen2.5-3B-Instruct-grpo-E6-D100-L4096-lr5e7", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/gongc1995-city-university-of-hong-kong/huggingface/runs/anhd3jid)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.2
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0063387130697568255,
4
+ "train_runtime": 1106.1477,
5
+ "train_samples": 100,
6
+ "train_samples_per_second": 0.271,
7
+ "train_steps_per_second": 0.003
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0063387130697568255,
4
+ "train_runtime": 1106.1477,
5
+ "train_samples": 100,
6
+ "train_samples_per_second": 0.271,
7
+ "train_steps_per_second": 0.003
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.8,
5
+ "eval_steps": 47,
6
+ "global_step": 3,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 629.5277777777778,
14
+ "epoch": 2.8,
15
+ "kl": 8.5857179429796e-05,
16
+ "reward": 0.851686547199885,
17
+ "reward_std": 0.37670273126827347,
18
+ "rewards/accuracy_reward": 0.3849206546114551,
19
+ "rewards/format_reward": 0.1567460395809677,
20
+ "rewards/tag_count_reward": 0.3100198532144229,
21
+ "step": 3,
22
+ "total_flos": 0.0,
23
+ "train_loss": 0.0063387130697568255,
24
+ "train_runtime": 1106.1477,
25
+ "train_samples_per_second": 0.271,
26
+ "train_steps_per_second": 0.003
27
+ }
28
+ ],
29
+ "logging_steps": 5,
30
+ "max_steps": 3,
31
+ "num_input_tokens_seen": 0,
32
+ "num_train_epochs": 3,
33
+ "save_steps": 500,
34
+ "stateful_callbacks": {
35
+ "TrainerControl": {
36
+ "args": {
37
+ "should_epoch_stop": false,
38
+ "should_evaluate": false,
39
+ "should_log": false,
40
+ "should_save": true,
41
+ "should_training_stop": true
42
+ },
43
+ "attributes": {}
44
+ }
45
+ },
46
+ "total_flos": 0.0,
47
+ "train_batch_size": 2,
48
+ "trial_name": null,
49
+ "trial_params": null
50
+ }