chenggong1995 commited on
Commit
95cbd97
·
verified ·
1 Parent(s): 479f974

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-Math-7B-RL-E4
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-Math-7B-RL-E4
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="chenggong1995/Qwen-2.5-Math-7B-RL-E4", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/gongc1995-city-university-of-hong-kong/huggingface/runs/epbkgvrt)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.2
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.046423821178983436,
4
+ "train_runtime": 64088.6589,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.468,
7
+ "train_steps_per_second": 0.006
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": 4096,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc8cc3c9586a49f5961af164a45eb7fc72fe137054528930688e3c41f299be8
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663ce642a5cb2de225ab5ec496cf5f952b9a964e6345c8fe8b354c96f020e218
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f335c89412acd038f14d5dda9587a18ec909b69bcdfc11f6b98bc367b694c8f0
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03f983222761d6467629d949da9d3ef9dbcc01bdcff8585743afc30f28e73c79
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.046423821178983436,
4
+ "train_runtime": 64088.6589,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.468,
7
+ "train_steps_per_second": 0.006
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.992,
5
+ "eval_steps": 100,
6
+ "global_step": 372,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 603.5946578979492,
14
+ "epoch": 0.010666666666666666,
15
+ "grad_norm": 0.5516607761383057,
16
+ "kl": 0.0,
17
+ "learning_rate": 7.894736842105262e-08,
18
+ "loss": 0.02,
19
+ "reward": 0.6678571403026581,
20
+ "reward_std": 0.3216256983578205,
21
+ "rewards/accuracy_reward": 0.6571428701281548,
22
+ "rewards/format_reward": 0.010714285774156451,
23
+ "step": 1
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "completion_length": 597.3767852783203,
28
+ "epoch": 0.05333333333333334,
29
+ "grad_norm": 0.2556845247745514,
30
+ "kl": 0.0001468658447265625,
31
+ "learning_rate": 3.9473684210526315e-07,
32
+ "loss": 0.0409,
33
+ "reward": 0.6642857193946838,
34
+ "reward_std": 0.33807775331661105,
35
+ "rewards/accuracy_reward": 0.6566964322701097,
36
+ "rewards/format_reward": 0.007589285756694153,
37
+ "step": 5
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 589.1785781860351,
42
+ "epoch": 0.10666666666666667,
43
+ "grad_norm": 0.3433384597301483,
44
+ "kl": 0.0002094268798828125,
45
+ "learning_rate": 7.894736842105263e-07,
46
+ "loss": 0.0595,
47
+ "reward": 0.6535714335739613,
48
+ "reward_std": 0.32146761380136013,
49
+ "rewards/accuracy_reward": 0.6446428611874581,
50
+ "rewards/format_reward": 0.008928571571595966,
51
+ "step": 10
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 600.2507247924805,
56
+ "epoch": 0.16,
57
+ "grad_norm": 0.48812174797058105,
58
+ "kl": 0.00038931369781494143,
59
+ "learning_rate": 1.1842105263157894e-06,
60
+ "loss": 0.0511,
61
+ "reward": 0.6946428589522838,
62
+ "reward_std": 0.3123627858236432,
63
+ "rewards/accuracy_reward": 0.6871428646147251,
64
+ "rewards/format_reward": 0.00750000006519258,
65
+ "step": 15
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 596.2403602600098,
70
+ "epoch": 0.21333333333333335,
71
+ "grad_norm": 0.3659345805644989,
72
+ "kl": 0.001643228530883789,
73
+ "learning_rate": 1.5789473684210526e-06,
74
+ "loss": 0.0613,
75
+ "reward": 0.7185714311897755,
76
+ "reward_std": 0.28948054276406765,
77
+ "rewards/accuracy_reward": 0.7135714307427407,
78
+ "rewards/format_reward": 0.005000000027939678,
79
+ "step": 20
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 587.3889312744141,
84
+ "epoch": 0.26666666666666666,
85
+ "grad_norm": 0.460025429725647,
86
+ "kl": 0.0052853584289550785,
87
+ "learning_rate": 1.973684210526316e-06,
88
+ "loss": 0.0622,
89
+ "reward": 0.7282142877578736,
90
+ "reward_std": 0.2650401175022125,
91
+ "rewards/accuracy_reward": 0.7235714301466942,
92
+ "rewards/format_reward": 0.004642857192084193,
93
+ "step": 25
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 614.826789855957,
98
+ "epoch": 0.32,
99
+ "grad_norm": 0.20424464344978333,
100
+ "kl": 0.00449981689453125,
101
+ "learning_rate": 2.368421052631579e-06,
102
+ "loss": 0.0648,
103
+ "reward": 0.7517857104539871,
104
+ "reward_std": 0.2205220595933497,
105
+ "rewards/accuracy_reward": 0.7489285707473755,
106
+ "rewards/format_reward": 0.002857142873108387,
107
+ "step": 30
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 576.6128578186035,
112
+ "epoch": 0.37333333333333335,
113
+ "grad_norm": 0.1937570720911026,
114
+ "kl": 0.006718826293945312,
115
+ "learning_rate": 2.763157894736842e-06,
116
+ "loss": 0.0462,
117
+ "reward": 0.79035714417696,
118
+ "reward_std": 0.1855543740093708,
119
+ "rewards/accuracy_reward": 0.7892857149243355,
120
+ "rewards/format_reward": 0.0010714285774156452,
121
+ "step": 35
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 598.0246505737305,
126
+ "epoch": 0.4266666666666667,
127
+ "grad_norm": 0.23902535438537598,
128
+ "kl": 0.01360149383544922,
129
+ "learning_rate": 2.9997345912364375e-06,
130
+ "loss": 0.0454,
131
+ "reward": 0.7460714317858219,
132
+ "reward_std": 0.21041248124092818,
133
+ "rewards/accuracy_reward": 0.7392857171595096,
134
+ "rewards/format_reward": 0.006785714346915483,
135
+ "step": 40
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 582.4003646850585,
140
+ "epoch": 0.48,
141
+ "grad_norm": 0.6725406050682068,
142
+ "kl": 0.017615890502929686,
143
+ "learning_rate": 2.996749821181634e-06,
144
+ "loss": 0.0359,
145
+ "reward": 0.7892857164144516,
146
+ "reward_std": 0.2517069520428777,
147
+ "rewards/accuracy_reward": 0.75571428835392,
148
+ "rewards/format_reward": 0.03357142908498645,
149
+ "step": 45
150
+ },
151
+ {
152
+ "clip_ratio": 0.0,
153
+ "completion_length": 603.898217010498,
154
+ "epoch": 0.5333333333333333,
155
+ "grad_norm": 0.5048671364784241,
156
+ "kl": 0.011526107788085938,
157
+ "learning_rate": 2.9904551426434754e-06,
158
+ "loss": 0.0335,
159
+ "reward": 0.7896428570151329,
160
+ "reward_std": 0.2881605923175812,
161
+ "rewards/accuracy_reward": 0.7271428614854812,
162
+ "rewards/format_reward": 0.06250000121071934,
163
+ "step": 50
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 580.8153602600098,
168
+ "epoch": 0.5866666666666667,
169
+ "grad_norm": 0.6043830513954163,
170
+ "kl": 0.01994476318359375,
171
+ "learning_rate": 2.980864475656959e-06,
172
+ "loss": 0.0254,
173
+ "reward": 0.8578571483492852,
174
+ "reward_std": 0.32197347320616243,
175
+ "rewards/accuracy_reward": 0.74178571626544,
176
+ "rewards/format_reward": 0.11607143122237176,
177
+ "step": 55
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 579.2271438598633,
182
+ "epoch": 0.64,
183
+ "grad_norm": 0.29581740498542786,
184
+ "kl": 0.012204742431640625,
185
+ "learning_rate": 2.9679990289969723e-06,
186
+ "loss": 0.0351,
187
+ "reward": 0.8657142907381058,
188
+ "reward_std": 0.2968884438276291,
189
+ "rewards/accuracy_reward": 0.761785714328289,
190
+ "rewards/format_reward": 0.10392857452388853,
191
+ "step": 60
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 591.5560768127441,
196
+ "epoch": 0.6933333333333334,
197
+ "grad_norm": 0.4318093955516815,
198
+ "kl": 0.03280029296875,
199
+ "learning_rate": 2.951887253277264e-06,
200
+ "loss": 0.0297,
201
+ "reward": 0.9300000056624412,
202
+ "reward_std": 0.3733633913099766,
203
+ "rewards/accuracy_reward": 0.7417857185006141,
204
+ "rewards/format_reward": 0.18821429125964642,
205
+ "step": 65
206
+ },
207
+ {
208
+ "clip_ratio": 0.0,
209
+ "completion_length": 611.58857421875,
210
+ "epoch": 0.7466666666666667,
211
+ "grad_norm": 2.673933267593384,
212
+ "kl": 0.048126220703125,
213
+ "learning_rate": 2.9325647780348364e-06,
214
+ "loss": 0.0394,
215
+ "reward": 0.9132142946124077,
216
+ "reward_std": 0.3908999715000391,
217
+ "rewards/accuracy_reward": 0.7196428544819355,
218
+ "rewards/format_reward": 0.19357143295928836,
219
+ "step": 70
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 605.3753646850586,
224
+ "epoch": 0.8,
225
+ "grad_norm": 0.6781793236732483,
226
+ "kl": 0.059979248046875,
227
+ "learning_rate": 2.9100743329388826e-06,
228
+ "loss": 0.042,
229
+ "reward": 0.8521428614854812,
230
+ "reward_std": 0.44031637236475946,
231
+ "rewards/accuracy_reward": 0.6639285758137703,
232
+ "rewards/format_reward": 0.18821429088711739,
233
+ "step": 75
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 611.6189346313477,
238
+ "epoch": 0.8533333333333334,
239
+ "grad_norm": 2.177452564239502,
240
+ "kl": 0.1802734375,
241
+ "learning_rate": 2.884465653298514e-06,
242
+ "loss": 0.0659,
243
+ "reward": 0.6303571477532387,
244
+ "reward_std": 0.5197178602218628,
245
+ "rewards/accuracy_reward": 0.4832142934203148,
246
+ "rewards/format_reward": 0.14714286094531417,
247
+ "step": 80
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 681.2253623962403,
252
+ "epoch": 0.9066666666666666,
253
+ "grad_norm": 5.2435994148254395,
254
+ "kl": 0.60625,
255
+ "learning_rate": 2.8557953700782305e-06,
256
+ "loss": 0.1428,
257
+ "reward": 0.4467857230454683,
258
+ "reward_std": 0.4360184334218502,
259
+ "rewards/accuracy_reward": 0.41107143461704254,
260
+ "rewards/format_reward": 0.03571428642608225,
261
+ "step": 85
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 697.349642944336,
266
+ "epoch": 0.96,
267
+ "grad_norm": 17.68018913269043,
268
+ "kl": 2.22822265625,
269
+ "learning_rate": 2.8241268846643613e-06,
270
+ "loss": 0.2796,
271
+ "reward": 0.49678572118282316,
272
+ "reward_std": 0.43236474245786666,
273
+ "rewards/accuracy_reward": 0.46214286610484123,
274
+ "rewards/format_reward": 0.034642857825383545,
275
+ "step": 90
276
+ },
277
+ {
278
+ "clip_ratio": 0.0,
279
+ "completion_length": 650.735001373291,
280
+ "epoch": 1.0213333333333334,
281
+ "grad_norm": 16.169004440307617,
282
+ "kl": 4.5029296875,
283
+ "learning_rate": 2.789530228659411e-06,
284
+ "loss": 0.3745,
285
+ "reward": 0.49964286386966705,
286
+ "reward_std": 0.42348831966519357,
287
+ "rewards/accuracy_reward": 0.4578571505844593,
288
+ "rewards/format_reward": 0.041785715334117415,
289
+ "step": 95
290
+ },
291
+ {
292
+ "epoch": 1.0746666666666667,
293
+ "grad_norm": 16.28914451599121,
294
+ "learning_rate": 2.7520819090143655e-06,
295
+ "loss": 0.2175,
296
+ "step": 100
297
+ },
298
+ {
299
+ "epoch": 1.0746666666666667,
300
+ "eval_clip_ratio": 0.0,
301
+ "eval_completion_length": 548.8102988891602,
302
+ "eval_kl": 12.394375,
303
+ "eval_loss": 0.5909453630447388,
304
+ "eval_reward": 0.5816285777390003,
305
+ "eval_reward_std": 0.37753888714313505,
306
+ "eval_rewards/accuracy_reward": 0.5438000068366527,
307
+ "eval_rewards/format_reward": 0.03782857222296297,
308
+ "eval_runtime": 6124.2952,
309
+ "eval_samples_per_second": 0.816,
310
+ "eval_steps_per_second": 0.012,
311
+ "step": 100
312
+ },
313
+ {
314
+ "clip_ratio": 0.0,
315
+ "completion_length": 550.720006942749,
316
+ "epoch": 1.1280000000000001,
317
+ "grad_norm": 49.118804931640625,
318
+ "kl": 4.5041015625,
319
+ "learning_rate": 2.711864738841427e-06,
320
+ "loss": 0.3096,
321
+ "reward": 0.6191071469336749,
322
+ "reward_std": 0.38678194154053924,
323
+ "rewards/accuracy_reward": 0.5803571455180645,
324
+ "rewards/format_reward": 0.038750000752042976,
325
+ "step": 105
326
+ },
327
+ {
328
+ "clip_ratio": 0.0,
329
+ "completion_length": 523.8392898559571,
330
+ "epoch": 1.1813333333333333,
331
+ "grad_norm": 19.96983528137207,
332
+ "kl": 4.0896484375,
333
+ "learning_rate": 2.668967654281324e-06,
334
+ "loss": 0.2402,
335
+ "reward": 0.6832142889499664,
336
+ "reward_std": 0.36785929203033446,
337
+ "rewards/accuracy_reward": 0.6496428608894348,
338
+ "rewards/format_reward": 0.03357142929453403,
339
+ "step": 110
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 554.866431427002,
344
+ "epoch": 1.2346666666666666,
345
+ "grad_norm": 6.781939506530762,
346
+ "kl": 3.09013671875,
347
+ "learning_rate": 2.6234855178301717e-06,
348
+ "loss": 0.1646,
349
+ "reward": 0.6760714322328567,
350
+ "reward_std": 0.310880384221673,
351
+ "rewards/accuracy_reward": 0.6560714334249497,
352
+ "rewards/format_reward": 0.020000000251457095,
353
+ "step": 115
354
+ },
355
+ {
356
+ "clip_ratio": 0.0,
357
+ "completion_length": 536.1167854309082,
358
+ "epoch": 1.288,
359
+ "grad_norm": 6.253053665161133,
360
+ "kl": 2.498974609375,
361
+ "learning_rate": 2.5755189085608046e-06,
362
+ "loss": 0.1272,
363
+ "reward": 0.6971428595483303,
364
+ "reward_std": 0.3085736159235239,
365
+ "rewards/accuracy_reward": 0.6796428576111794,
366
+ "rewards/format_reward": 0.017500000167638065,
367
+ "step": 120
368
+ },
369
+ {
370
+ "clip_ratio": 0.0,
371
+ "completion_length": 526.4314331054687,
372
+ "epoch": 1.3413333333333333,
373
+ "grad_norm": 3.0490851402282715,
374
+ "kl": 2.29580078125,
375
+ "learning_rate": 2.5251738997024913e-06,
376
+ "loss": 0.1268,
377
+ "reward": 0.7439285695552826,
378
+ "reward_std": 0.31444666273891925,
379
+ "rewards/accuracy_reward": 0.7060714334249496,
380
+ "rewards/format_reward": 0.037857143627479675,
381
+ "step": 125
382
+ },
383
+ {
384
+ "clip_ratio": 0.0,
385
+ "completion_length": 546.8860710144043,
386
+ "epoch": 1.3946666666666667,
387
+ "grad_norm": 10.747838973999023,
388
+ "kl": 1.85048828125,
389
+ "learning_rate": 2.4725618240708804e-06,
390
+ "loss": 0.108,
391
+ "reward": 0.7599999979138374,
392
+ "reward_std": 0.3282610267400742,
393
+ "rewards/accuracy_reward": 0.7164285719394684,
394
+ "rewards/format_reward": 0.043571429373696444,
395
+ "step": 130
396
+ },
397
+ {
398
+ "clip_ratio": 0.0,
399
+ "completion_length": 534.8628593444824,
400
+ "epoch": 1.448,
401
+ "grad_norm": 3.6572587490081787,
402
+ "kl": 1.6306396484375,
403
+ "learning_rate": 2.417799027866917e-06,
404
+ "loss": 0.0736,
405
+ "reward": 0.7350000008940697,
406
+ "reward_std": 0.35150096751749516,
407
+ "rewards/accuracy_reward": 0.6803571470081806,
408
+ "rewards/format_reward": 0.05464285863563419,
409
+ "step": 135
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 530.9917877197265,
414
+ "epoch": 1.5013333333333332,
415
+ "grad_norm": 8.864882469177246,
416
+ "kl": 2.42578125,
417
+ "learning_rate": 2.3610066133891706e-06,
418
+ "loss": 0.0744,
419
+ "reward": 0.7300000011920929,
420
+ "reward_std": 0.4424170255661011,
421
+ "rewards/accuracy_reward": 0.6117857187986374,
422
+ "rewards/format_reward": 0.1182142885401845,
423
+ "step": 140
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 516.1107185363769,
428
+ "epoch": 1.5546666666666666,
429
+ "grad_norm": 3.990010976791382,
430
+ "kl": 2.644091796875,
431
+ "learning_rate": 2.3023101712285398e-06,
432
+ "loss": 0.057,
433
+ "reward": 0.8574999988079071,
434
+ "reward_std": 0.49391784705221653,
435
+ "rewards/accuracy_reward": 0.6457142919301987,
436
+ "rewards/format_reward": 0.21178571931086482,
437
+ "step": 145
438
+ },
439
+ {
440
+ "clip_ratio": 0.0,
441
+ "completion_length": 524.2689338684082,
442
+ "epoch": 1.608,
443
+ "grad_norm": 2.412954092025757,
444
+ "kl": 2.77197265625,
445
+ "learning_rate": 2.241839502537563e-06,
446
+ "loss": 0.0402,
447
+ "reward": 0.8878571495413781,
448
+ "reward_std": 0.5054053217172623,
449
+ "rewards/accuracy_reward": 0.6367857187986374,
450
+ "rewards/format_reward": 0.2510714347474277,
451
+ "step": 150
452
+ },
453
+ {
454
+ "clip_ratio": 0.0,
455
+ "completion_length": 517.0146469116211,
456
+ "epoch": 1.6613333333333333,
457
+ "grad_norm": 3.1102499961853027,
458
+ "kl": 2.2763671875,
459
+ "learning_rate": 2.179728331988501e-06,
460
+ "loss": 0.0304,
461
+ "reward": 0.8621428608894348,
462
+ "reward_std": 0.44099100194871427,
463
+ "rewards/accuracy_reward": 0.6635714322328568,
464
+ "rewards/format_reward": 0.19857143410481512,
465
+ "step": 155
466
+ },
467
+ {
468
+ "clip_ratio": 0.0,
469
+ "completion_length": 499.7432174682617,
470
+ "epoch": 1.7146666666666666,
471
+ "grad_norm": 6.359482288360596,
472
+ "kl": 2.4619140625,
473
+ "learning_rate": 2.116114012054961e-06,
474
+ "loss": 0.0077,
475
+ "reward": 0.8435714364051818,
476
+ "reward_std": 0.48649194166064264,
477
+ "rewards/accuracy_reward": 0.6239285781979561,
478
+ "rewards/format_reward": 0.21964286239817737,
479
+ "step": 160
480
+ },
481
+ {
482
+ "clip_ratio": 0.0,
483
+ "completion_length": 498.7282180786133,
484
+ "epoch": 1.768,
485
+ "grad_norm": 9.238311767578125,
486
+ "kl": 3.5078125,
487
+ "learning_rate": 2.0511372192710126e-06,
488
+ "loss": 0.0425,
489
+ "reward": 0.9250000014901161,
490
+ "reward_std": 0.5103498436510563,
491
+ "rewards/accuracy_reward": 0.6107142917811871,
492
+ "rewards/format_reward": 0.3142857207916677,
493
+ "step": 165
494
+ },
495
+ {
496
+ "clip_ratio": 0.0,
497
+ "completion_length": 491.2950042724609,
498
+ "epoch": 1.8213333333333335,
499
+ "grad_norm": 9.016805648803711,
500
+ "kl": 2.2509765625,
501
+ "learning_rate": 1.984941643139478e-06,
502
+ "loss": -0.0307,
503
+ "reward": 1.0628571465611458,
504
+ "reward_std": 0.5711491458117962,
505
+ "rewards/accuracy_reward": 0.6128571502864361,
506
+ "rewards/format_reward": 0.45000001005828383,
507
+ "step": 170
508
+ },
509
+ {
510
+ "clip_ratio": 0.0,
511
+ "completion_length": 489.2357177734375,
512
+ "epoch": 1.8746666666666667,
513
+ "grad_norm": 18.03326988220215,
514
+ "kl": 3.234765625,
515
+ "learning_rate": 1.9176736683773613e-06,
516
+ "loss": -0.0073,
517
+ "reward": 1.2264285877346992,
518
+ "reward_std": 0.5304918490350247,
519
+ "rewards/accuracy_reward": 0.6496428653597832,
520
+ "rewards/format_reward": 0.5767857208848,
521
+ "step": 175
522
+ },
523
+ {
524
+ "clip_ratio": 0.0,
525
+ "completion_length": 480.22750396728514,
526
+ "epoch": 1.928,
527
+ "grad_norm": 5.03889799118042,
528
+ "kl": 2.7779296875,
529
+ "learning_rate": 1.8494820512010797e-06,
530
+ "loss": -0.0156,
531
+ "reward": 1.2835714370012283,
532
+ "reward_std": 0.5365196898579597,
533
+ "rewards/accuracy_reward": 0.6614285789430141,
534
+ "rewards/format_reward": 0.6221428655087948,
535
+ "step": 180
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 504.85750579833984,
540
+ "epoch": 1.9813333333333332,
541
+ "grad_norm": 20.948030471801758,
542
+ "kl": 2.94013671875,
543
+ "learning_rate": 1.780517590367375e-06,
544
+ "loss": -0.0176,
545
+ "reward": 1.2474999949336052,
546
+ "reward_std": 0.5874028220772743,
547
+ "rewards/accuracy_reward": 0.6375000067055225,
548
+ "rewards/format_reward": 0.6100000090897083,
549
+ "step": 185
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 494.6467887878418,
554
+ "epoch": 2.042666666666667,
555
+ "grad_norm": 2.8199145793914795,
556
+ "kl": 2.37197265625,
557
+ "learning_rate": 1.7109327936973479e-06,
558
+ "loss": -0.0157,
559
+ "reward": 1.353214304149151,
560
+ "reward_std": 0.5247410386800766,
561
+ "rewards/accuracy_reward": 0.6764285713434219,
562
+ "rewards/format_reward": 0.6767857156693935,
563
+ "step": 190
564
+ },
565
+ {
566
+ "clip_ratio": 0.0,
567
+ "completion_length": 483.0278602600098,
568
+ "epoch": 2.096,
569
+ "grad_norm": 13.793828010559082,
570
+ "kl": 2.445703125,
571
+ "learning_rate": 1.6408815408210818e-06,
572
+ "loss": -0.0227,
573
+ "reward": 1.3939285814762115,
574
+ "reward_std": 0.5199761673808098,
575
+ "rewards/accuracy_reward": 0.7057142898440361,
576
+ "rewards/format_reward": 0.6882142893970012,
577
+ "step": 195
578
+ },
579
+ {
580
+ "epoch": 2.1493333333333333,
581
+ "grad_norm": 3.724238872528076,
582
+ "learning_rate": 1.5705187428886465e-06,
583
+ "loss": -0.0155,
584
+ "step": 200
585
+ },
586
+ {
587
+ "epoch": 2.1493333333333333,
588
+ "eval_clip_ratio": 0.0,
589
+ "eval_completion_length": 512.0718896484375,
590
+ "eval_kl": 1.576041015625,
591
+ "eval_loss": -0.009688925929367542,
592
+ "eval_reward": 1.365571434855461,
593
+ "eval_reward_std": 0.49168447187542913,
594
+ "eval_rewards/accuracy_reward": 0.66702857619524,
595
+ "eval_rewards/format_reward": 0.6985428606867791,
596
+ "eval_runtime": 6003.0557,
597
+ "eval_samples_per_second": 0.833,
598
+ "eval_steps_per_second": 0.012,
599
+ "step": 200
600
+ },
601
+ {
602
+ "clip_ratio": 0.0,
603
+ "completion_length": 505.77339363098145,
604
+ "epoch": 2.2026666666666666,
605
+ "grad_norm": 2.5565314292907715,
606
+ "kl": 1.9068603515625,
607
+ "learning_rate": 1.5e-06,
608
+ "loss": -0.0106,
609
+ "reward": 1.388928584754467,
610
+ "reward_std": 0.5045508090406656,
611
+ "rewards/accuracy_reward": 0.7166071452200413,
612
+ "rewards/format_reward": 0.6723214339464902,
613
+ "step": 205
614
+ },
615
+ {
616
+ "clip_ratio": 0.0,
617
+ "completion_length": 523.7457168579101,
618
+ "epoch": 2.2560000000000002,
619
+ "grad_norm": 3.069352626800537,
620
+ "kl": 1.618798828125,
621
+ "learning_rate": 1.429481257111354e-06,
622
+ "loss": -0.009,
623
+ "reward": 1.4150000035762786,
624
+ "reward_std": 0.49943920969963074,
625
+ "rewards/accuracy_reward": 0.7103571489453315,
626
+ "rewards/format_reward": 0.7046428620815277,
627
+ "step": 210
628
+ },
629
+ {
630
+ "clip_ratio": 0.0,
631
+ "completion_length": 530.0814331054687,
632
+ "epoch": 2.3093333333333335,
633
+ "grad_norm": 3.0543601512908936,
634
+ "kl": 1.9750244140625,
635
+ "learning_rate": 1.3591184591789185e-06,
636
+ "loss": 0.019,
637
+ "reward": 1.4221428513526917,
638
+ "reward_std": 0.4604501351714134,
639
+ "rewards/accuracy_reward": 0.6807142853736877,
640
+ "rewards/format_reward": 0.7414285719394684,
641
+ "step": 215
642
+ },
643
+ {
644
+ "clip_ratio": 0.0,
645
+ "completion_length": 534.6321449279785,
646
+ "epoch": 2.3626666666666667,
647
+ "grad_norm": 2.2766215801239014,
648
+ "kl": 1.20283203125,
649
+ "learning_rate": 1.289067206302653e-06,
650
+ "loss": 0.0046,
651
+ "reward": 1.4853571504354477,
652
+ "reward_std": 0.4559413559734821,
653
+ "rewards/accuracy_reward": 0.7289285689592362,
654
+ "rewards/format_reward": 0.7564285725355149,
655
+ "step": 220
656
+ },
657
+ {
658
+ "clip_ratio": 0.0,
659
+ "completion_length": 535.5114295959472,
660
+ "epoch": 2.416,
661
+ "grad_norm": 6.880006790161133,
662
+ "kl": 1.637890625,
663
+ "learning_rate": 1.2194824096326252e-06,
664
+ "loss": 0.0129,
665
+ "reward": 1.4717857182025909,
666
+ "reward_std": 0.45263413041830064,
667
+ "rewards/accuracy_reward": 0.7039285734295845,
668
+ "rewards/format_reward": 0.7678571432828903,
669
+ "step": 225
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 519.4785758972168,
674
+ "epoch": 2.469333333333333,
675
+ "grad_norm": 1.4145762920379639,
676
+ "kl": 1.39964599609375,
677
+ "learning_rate": 1.1505179487989203e-06,
678
+ "loss": 0.0005,
679
+ "reward": 1.5700000017881393,
680
+ "reward_std": 0.4442869186401367,
681
+ "rewards/accuracy_reward": 0.7607142880558968,
682
+ "rewards/format_reward": 0.809285718202591,
683
+ "step": 230
684
+ },
685
+ {
686
+ "clip_ratio": 0.0,
687
+ "completion_length": 531.5350059509277,
688
+ "epoch": 2.522666666666667,
689
+ "grad_norm": 2.4906344413757324,
690
+ "kl": 2.0687744140625,
691
+ "learning_rate": 1.0823263316226388e-06,
692
+ "loss": 0.0247,
693
+ "reward": 1.4989285796880722,
694
+ "reward_std": 0.45227440148591996,
695
+ "rewards/accuracy_reward": 0.7221428595483304,
696
+ "rewards/format_reward": 0.7767857149243355,
697
+ "step": 235
698
+ },
699
+ {
700
+ "clip_ratio": 0.0,
701
+ "completion_length": 535.0050033569336,
702
+ "epoch": 2.576,
703
+ "grad_norm": 1.7402544021606445,
704
+ "kl": 1.248944091796875,
705
+ "learning_rate": 1.0150583568605221e-06,
706
+ "loss": 0.0079,
707
+ "reward": 1.5596428662538528,
708
+ "reward_std": 0.41812130361795424,
709
+ "rewards/accuracy_reward": 0.7350000031292439,
710
+ "rewards/format_reward": 0.8246428564190864,
711
+ "step": 240
712
+ },
713
+ {
714
+ "clip_ratio": 0.0,
715
+ "completion_length": 537.6096481323242,
716
+ "epoch": 2.6293333333333333,
717
+ "grad_norm": 4.602447509765625,
718
+ "kl": 1.56826171875,
719
+ "learning_rate": 9.488627807289882e-07,
720
+ "loss": 0.0175,
721
+ "reward": 1.525357148051262,
722
+ "reward_std": 0.431475493311882,
723
+ "rewards/accuracy_reward": 0.7296428553760052,
724
+ "rewards/format_reward": 0.7957142800092697,
725
+ "step": 245
726
+ },
727
+ {
728
+ "clip_ratio": 0.0,
729
+ "completion_length": 518.1739295959472,
730
+ "epoch": 2.6826666666666665,
731
+ "grad_norm": 2.083872079849243,
732
+ "kl": 1.552978515625,
733
+ "learning_rate": 8.838859879450389e-07,
734
+ "loss": 0.0217,
735
+ "reward": 1.5639285832643508,
736
+ "reward_std": 0.426826455257833,
737
+ "rewards/accuracy_reward": 0.7457142874598504,
738
+ "rewards/format_reward": 0.8182142853736878,
739
+ "step": 250
740
+ },
741
+ {
742
+ "clip_ratio": 0.0,
743
+ "completion_length": 521.3553634643555,
744
+ "epoch": 2.7359999999999998,
745
+ "grad_norm": 4.696753978729248,
746
+ "kl": 1.580224609375,
747
+ "learning_rate": 8.202716680115e-07,
748
+ "loss": 0.0233,
749
+ "reward": 1.5221428662538528,
750
+ "reward_std": 0.4356484226882458,
751
+ "rewards/accuracy_reward": 0.7357142850756645,
752
+ "rewards/format_reward": 0.7864285722374916,
753
+ "step": 255
754
+ },
755
+ {
756
+ "clip_ratio": 0.0,
757
+ "completion_length": 513.2957183837891,
758
+ "epoch": 2.7893333333333334,
759
+ "grad_norm": 3.655956745147705,
760
+ "kl": 1.584326171875,
761
+ "learning_rate": 7.581604974624371e-07,
762
+ "loss": 0.0256,
763
+ "reward": 1.4928571552038192,
764
+ "reward_std": 0.4848907835781574,
765
+ "rewards/accuracy_reward": 0.7232142873108387,
766
+ "rewards/format_reward": 0.7696428582072258,
767
+ "step": 260
768
+ },
769
+ {
770
+ "clip_ratio": 0.0,
771
+ "completion_length": 509.24785842895506,
772
+ "epoch": 2.8426666666666667,
773
+ "grad_norm": 2.87070894241333,
774
+ "kl": 1.654150390625,
775
+ "learning_rate": 6.976898287714604e-07,
776
+ "loss": 0.0159,
777
+ "reward": 1.4539285823702812,
778
+ "reward_std": 0.4541813228279352,
779
+ "rewards/accuracy_reward": 0.6950000040233135,
780
+ "rewards/format_reward": 0.7589285731315613,
781
+ "step": 265
782
+ },
783
+ {
784
+ "clip_ratio": 0.0,
785
+ "completion_length": 525.0035736083985,
786
+ "epoch": 2.896,
787
+ "grad_norm": 3.930969476699829,
788
+ "kl": 1.767578125,
789
+ "learning_rate": 6.389933866108296e-07,
790
+ "loss": 0.0307,
791
+ "reward": 1.4810714304447175,
792
+ "reward_std": 0.4880278453230858,
793
+ "rewards/accuracy_reward": 0.724285714328289,
794
+ "rewards/format_reward": 0.7567857146263123,
795
+ "step": 270
796
+ },
797
+ {
798
+ "clip_ratio": 0.0,
799
+ "completion_length": 525.0428611755372,
800
+ "epoch": 2.9493333333333336,
801
+ "grad_norm": 2.4287071228027344,
802
+ "kl": 1.80546875,
803
+ "learning_rate": 5.822009721330832e-07,
804
+ "loss": 0.0282,
805
+ "reward": 1.4832143098115922,
806
+ "reward_std": 0.4480956181883812,
807
+ "rewards/accuracy_reward": 0.7142857179045677,
808
+ "rewards/format_reward": 0.7689285710453987,
809
+ "step": 275
810
+ },
811
+ {
812
+ "clip_ratio": 0.0,
813
+ "completion_length": 511.9317855834961,
814
+ "epoch": 3.010666666666667,
815
+ "grad_norm": 2.061641216278076,
816
+ "kl": 2.241748046875,
817
+ "learning_rate": 5.2743817592912e-07,
818
+ "loss": 0.0328,
819
+ "reward": 1.455000001192093,
820
+ "reward_std": 0.46853253729641436,
821
+ "rewards/accuracy_reward": 0.6910714313387871,
822
+ "rewards/format_reward": 0.763928571343422,
823
+ "step": 280
824
+ },
825
+ {
826
+ "clip_ratio": 0.0,
827
+ "completion_length": 522.1992881774902,
828
+ "epoch": 3.064,
829
+ "grad_norm": 1.9162739515304565,
830
+ "kl": 1.256103515625,
831
+ "learning_rate": 4.7482610029750927e-07,
832
+ "loss": 0.0036,
833
+ "reward": 1.5257142961025238,
834
+ "reward_std": 0.42034803740680216,
835
+ "rewards/accuracy_reward": 0.7310714319348335,
836
+ "rewards/format_reward": 0.7946428567171097,
837
+ "step": 285
838
+ },
839
+ {
840
+ "clip_ratio": 0.0,
841
+ "completion_length": 530.8821426391602,
842
+ "epoch": 3.1173333333333333,
843
+ "grad_norm": 2.2770814895629883,
844
+ "kl": 2.02861328125,
845
+ "learning_rate": 4.244810914391956e-07,
846
+ "loss": -0.001,
847
+ "reward": 1.5200000017881394,
848
+ "reward_std": 0.4468880720436573,
849
+ "rewards/accuracy_reward": 0.7317857146263123,
850
+ "rewards/format_reward": 0.7882142812013626,
851
+ "step": 290
852
+ },
853
+ {
854
+ "clip_ratio": 0.0,
855
+ "completion_length": 530.2903610229492,
856
+ "epoch": 3.1706666666666665,
857
+ "grad_norm": 2.8380885124206543,
858
+ "kl": 1.5606689453125,
859
+ "learning_rate": 3.7651448216982855e-07,
860
+ "loss": 0.0219,
861
+ "reward": 1.534642866253853,
862
+ "reward_std": 0.42025899738073347,
863
+ "rewards/accuracy_reward": 0.7257142871618271,
864
+ "rewards/format_reward": 0.8089285686612129,
865
+ "step": 295
866
+ },
867
+ {
868
+ "epoch": 3.224,
869
+ "grad_norm": 2.1940526962280273,
870
+ "learning_rate": 3.3103234571867633e-07,
871
+ "loss": 0.0001,
872
+ "step": 300
873
+ },
874
+ {
875
+ "epoch": 3.224,
876
+ "eval_clip_ratio": 0.0,
877
+ "eval_completion_length": 519.2250689086914,
878
+ "eval_kl": 1.42582421875,
879
+ "eval_loss": 0.013943231664597988,
880
+ "eval_reward": 1.5034000079631806,
881
+ "eval_reward_std": 0.41947181399166583,
882
+ "eval_rewards/accuracy_reward": 0.6849714323282242,
883
+ "eval_rewards/format_reward": 0.8184285705089569,
884
+ "eval_runtime": 6122.2221,
885
+ "eval_samples_per_second": 0.817,
886
+ "eval_steps_per_second": 0.012,
887
+ "step": 300
888
+ },
889
+ {
890
+ "clip_ratio": 0.0,
891
+ "completion_length": 524.1357151031494,
892
+ "epoch": 3.2773333333333334,
893
+ "grad_norm": 2.4619476795196533,
894
+ "kl": 1.54144287109375,
895
+ "learning_rate": 2.8813526115857293e-07,
896
+ "loss": 0.0063,
897
+ "reward": 1.5721428662538528,
898
+ "reward_std": 0.40110522620379924,
899
+ "rewards/accuracy_reward": 0.7501785714179278,
900
+ "rewards/format_reward": 0.8219642840325833,
901
+ "step": 305
902
+ },
903
+ {
904
+ "clip_ratio": 0.0,
905
+ "completion_length": 509.5435729980469,
906
+ "epoch": 3.3306666666666667,
907
+ "grad_norm": 8.40831470489502,
908
+ "kl": 1.7404296875,
909
+ "learning_rate": 2.479180909856347e-07,
910
+ "loss": 0.0136,
911
+ "reward": 1.4957142978906632,
912
+ "reward_std": 0.4558893218636513,
913
+ "rewards/accuracy_reward": 0.7010714299976826,
914
+ "rewards/format_reward": 0.7946428552269935,
915
+ "step": 310
916
+ },
917
+ {
918
+ "clip_ratio": 0.0,
919
+ "completion_length": 520.3792892456055,
920
+ "epoch": 3.384,
921
+ "grad_norm": 4.6018877029418945,
922
+ "kl": 1.7560302734375,
923
+ "learning_rate": 2.104697713405892e-07,
924
+ "loss": 0.0214,
925
+ "reward": 1.5135714292526246,
926
+ "reward_std": 0.4333773460239172,
927
+ "rewards/accuracy_reward": 0.7192857176065445,
928
+ "rewards/format_reward": 0.79428571164608,
929
+ "step": 315
930
+ },
931
+ {
932
+ "clip_ratio": 0.0,
933
+ "completion_length": 494.4396492004395,
934
+ "epoch": 3.437333333333333,
935
+ "grad_norm": 4.831773281097412,
936
+ "kl": 1.40341796875,
937
+ "learning_rate": 1.7587311533563887e-07,
938
+ "loss": 0.0066,
939
+ "reward": 1.5846428632736207,
940
+ "reward_std": 0.4081498969346285,
941
+ "rewards/accuracy_reward": 0.7592857137322426,
942
+ "rewards/format_reward": 0.825357137620449,
943
+ "step": 320
944
+ },
945
+ {
946
+ "clip_ratio": 0.0,
947
+ "completion_length": 508.63000259399416,
948
+ "epoch": 3.490666666666667,
949
+ "grad_norm": 2.3977479934692383,
950
+ "kl": 1.6579345703125,
951
+ "learning_rate": 1.4420462992176975e-07,
952
+ "loss": 0.0181,
953
+ "reward": 1.5185714453458785,
954
+ "reward_std": 0.44710296392440796,
955
+ "rewards/accuracy_reward": 0.7267857134342194,
956
+ "rewards/format_reward": 0.7917857110500336,
957
+ "step": 325
958
+ },
959
+ {
960
+ "clip_ratio": 0.0,
961
+ "completion_length": 519.3960723876953,
962
+ "epoch": 3.544,
963
+ "grad_norm": 2.906923532485962,
964
+ "kl": 1.84501953125,
965
+ "learning_rate": 1.1553434670148605e-07,
966
+ "loss": 0.0087,
967
+ "reward": 1.503214305639267,
968
+ "reward_std": 0.46401076950132847,
969
+ "rewards/accuracy_reward": 0.7150000005960464,
970
+ "rewards/format_reward": 0.7882142841815949,
971
+ "step": 330
972
+ },
973
+ {
974
+ "clip_ratio": 0.0,
975
+ "completion_length": 515.9103630065918,
976
+ "epoch": 3.5973333333333333,
977
+ "grad_norm": 2.045380115509033,
978
+ "kl": 1.571337890625,
979
+ "learning_rate": 8.992566706111727e-08,
980
+ "loss": -0.0024,
981
+ "reward": 1.540000006556511,
982
+ "reward_std": 0.435180502384901,
983
+ "rewards/accuracy_reward": 0.7353571504354477,
984
+ "rewards/format_reward": 0.8046428561210632,
985
+ "step": 335
986
+ },
987
+ {
988
+ "clip_ratio": 0.0,
989
+ "completion_length": 509.41107177734375,
990
+ "epoch": 3.6506666666666665,
991
+ "grad_norm": 3.562167167663574,
992
+ "kl": 1.6155029296875,
993
+ "learning_rate": 6.743522196516388e-08,
994
+ "loss": 0.0079,
995
+ "reward": 1.53071428835392,
996
+ "reward_std": 0.42104902639985087,
997
+ "rewards/accuracy_reward": 0.7242857120931149,
998
+ "rewards/format_reward": 0.8064285680651665,
999
+ "step": 340
1000
+ },
1001
+ {
1002
+ "clip_ratio": 0.0,
1003
+ "completion_length": 507.3475028991699,
1004
+ "epoch": 3.7039999999999997,
1005
+ "grad_norm": 8.227246284484863,
1006
+ "kl": 1.647607421875,
1007
+ "learning_rate": 4.811274672273652e-08,
1008
+ "loss": 0.0177,
1009
+ "reward": 1.5507142812013626,
1010
+ "reward_std": 0.4271882243454456,
1011
+ "rewards/accuracy_reward": 0.7385714307427407,
1012
+ "rewards/format_reward": 0.8121428564190865,
1013
+ "step": 345
1014
+ },
1015
+ {
1016
+ "clip_ratio": 0.0,
1017
+ "completion_length": 508.85178833007814,
1018
+ "epoch": 3.7573333333333334,
1019
+ "grad_norm": 4.183529376983643,
1020
+ "kl": 1.48662109375,
1021
+ "learning_rate": 3.200097100302812e-08,
1022
+ "loss": 0.0025,
1023
+ "reward": 1.5217857152223586,
1024
+ "reward_std": 0.43769130408763884,
1025
+ "rewards/accuracy_reward": 0.7239285737276078,
1026
+ "rewards/format_reward": 0.797857141494751,
1027
+ "step": 350
1028
+ },
1029
+ {
1030
+ "clip_ratio": 0.0,
1031
+ "completion_length": 517.6982177734375,
1032
+ "epoch": 3.8106666666666666,
1033
+ "grad_norm": 2.569713592529297,
1034
+ "kl": 1.5388671875,
1035
+ "learning_rate": 1.9135524343040946e-08,
1036
+ "loss": 0.0151,
1037
+ "reward": 1.522142869234085,
1038
+ "reward_std": 0.44272076338529587,
1039
+ "rewards/accuracy_reward": 0.7325000062584877,
1040
+ "rewards/format_reward": 0.7896428555250168,
1041
+ "step": 355
1042
+ },
1043
+ {
1044
+ "clip_ratio": 0.0,
1045
+ "completion_length": 508.73714141845704,
1046
+ "epoch": 3.864,
1047
+ "grad_norm": 3.259504795074463,
1048
+ "kl": 1.57216796875,
1049
+ "learning_rate": 9.54485735652455e-09,
1050
+ "loss": 0.0061,
1051
+ "reward": 1.5335714370012283,
1052
+ "reward_std": 0.4290111746639013,
1053
+ "rewards/accuracy_reward": 0.7246428586542606,
1054
+ "rewards/format_reward": 0.808928570151329,
1055
+ "step": 360
1056
+ },
1057
+ {
1058
+ "clip_ratio": 0.0,
1059
+ "completion_length": 525.433218383789,
1060
+ "epoch": 3.9173333333333336,
1061
+ "grad_norm": 2.6966588497161865,
1062
+ "kl": 1.55546875,
1063
+ "learning_rate": 3.2501788183657564e-09,
1064
+ "loss": 0.0102,
1065
+ "reward": 1.5185714438557625,
1066
+ "reward_std": 0.45268934071063993,
1067
+ "rewards/accuracy_reward": 0.7200000017881394,
1068
+ "rewards/format_reward": 0.7985714256763459,
1069
+ "step": 365
1070
+ },
1071
+ {
1072
+ "clip_ratio": 0.0,
1073
+ "completion_length": 525.9932167053223,
1074
+ "epoch": 3.970666666666667,
1075
+ "grad_norm": 2.979252815246582,
1076
+ "kl": 1.54794921875,
1077
+ "learning_rate": 2.6540876356256906e-10,
1078
+ "loss": 0.017,
1079
+ "reward": 1.5514285653829574,
1080
+ "reward_std": 0.447709359228611,
1081
+ "rewards/accuracy_reward": 0.7378571465611458,
1082
+ "rewards/format_reward": 0.81357142329216,
1083
+ "step": 370
1084
+ },
1085
+ {
1086
+ "clip_ratio": 0.0,
1087
+ "completion_length": 454.072322845459,
1088
+ "epoch": 3.992,
1089
+ "kl": 1.3245849609375,
1090
+ "reward": 1.5482143089175224,
1091
+ "reward_std": 0.4065241804346442,
1092
+ "rewards/accuracy_reward": 0.7303571458905935,
1093
+ "rewards/format_reward": 0.8178571350872517,
1094
+ "step": 372,
1095
+ "total_flos": 0.0,
1096
+ "train_loss": 0.046423821178983436,
1097
+ "train_runtime": 64088.6589,
1098
+ "train_samples_per_second": 0.468,
1099
+ "train_steps_per_second": 0.006
1100
+ }
1101
+ ],
1102
+ "logging_steps": 5,
1103
+ "max_steps": 372,
1104
+ "num_input_tokens_seen": 0,
1105
+ "num_train_epochs": 4,
1106
+ "save_steps": 500,
1107
+ "stateful_callbacks": {
1108
+ "TrainerControl": {
1109
+ "args": {
1110
+ "should_epoch_stop": false,
1111
+ "should_evaluate": false,
1112
+ "should_log": false,
1113
+ "should_save": false,
1114
+ "should_training_stop": false
1115
+ },
1116
+ "attributes": {}
1117
+ }
1118
+ },
1119
+ "total_flos": 0.0,
1120
+ "train_batch_size": 14,
1121
+ "trial_name": null,
1122
+ "trial_params": null
1123
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fba5d7f98b16842e464ed2a37499a95e798981ec69fb28890dcf910480a5036
3
+ size 7992
vocab.json ADDED
The diff for this file is too large to render. See raw diff